THE PERCEPTION AND PRODUCTION OF TWO VOWEL MERGERS in Cowlitz County, Washington

Joey Stanley
University of Georgia
joeystan@uga.edu @joey_stan
joeystanley.com

American Dialect Society Annual Meeting
Austin, Texas
January 5, 2017

Pacific Northwest English

prevelar /e, $\varepsilon, \nprec /$ raising and merging (Wassink et al. 2009, Freeman 2014, Riebold 2015, etc.)
$=$ MARY-MERRY-MARRY vowels
/u, v, o/ fronting (Ward 2003, Becker et al. 2013, McLarty \& Kendall 2014, etc.)
= POOL-PULL-POLE(-PULP) vowels

Linguistic Atlas of the Pacific Northwest (LAPNW) (Reed 1952, 1956, 1957, 1961)

MARY-MERRY-MARRY MERGER

$M / e / r y=m / \varepsilon / r r y=m / æ / r r y$ (henceforth "pre-rhotics")

ANAE: "This query was not pursued in most areas of the West and Midwest." (Labov, Ash, \& Boberg 2006:54, note 6)

Change in progress 60 years ago
fully merged (Reed 1952, Thomas 1958, Foster \& Hoffman 1966)
yet...
a few older speakers retain /e/ in Mary and /æ/ in marry (Reed 1961:560) chair "sporadically" as $\left[\varepsilon^{1}\right]$ in eastern Washington (561) near even distribution of $[\varepsilon]$ and $[æ]$ in parents (562)

"Pre-Lateral" Mergers

several mergers involving back vowels before coda laterals

"Pre-Lateral" Mergers

several mergers involving back vowels before coda laterals

POOL-PULL

"Pre-Lateral" Mergers

several mergers involving back vowels before coda laterals
POOL-PULL PULL-POLE

"Pre-Lateral" Mergers

several mergers involving back vowels before coda laterals
POOL-PULL PULL-POLE
HULL-HOLE

"Pre-Lateral" Mergers

several mergers involving back vowels before coda laterals

POOL-PULL PULL-POLE
HULL-HOLE PULL-HULL

"Pre-Lateral" Mergers

several mergers involving back vowels before coda laterals

POOL-PULL	PULL-POLE
HULL-HOLE	PULL-HULL

"deserve further study" (Labov, Ash, \& Boberg 2006: 73)
variable in Maryland (Bowie 2001), Ohio (Arnold 2014), Missouri (Strelluf 2016), and Utah (Baker \& Bowie 2010)
bulk and bulge as [Λ] or [Ј], pull as [$¥]_{\text {(Reed 1961) }}$

Overview

MARY-MERRY-MARRY historically variable, but likely merged today
Status of pre-lateral mergers is unknown, though impressionistically less clear cut

Hypothesis 1: complete MARY-MERRY-MARRY merger
Hypothesis 2: separation of POOL, PULL, POLE, and PULP
Hypothesis 3: production/intuition mismatch

Methodology

Data Collection

40 natives of Cowlitz County, ages 18-70s

word list (23) and minimal pairs (14)
list in appendix slides

	word list	minimal pairs	total
pre-laterals	376	842	1,218
pre-rhotics	342	509	851
total	718	1,351	2,069

intuition of own minimal pairs
forced aligned with DARLA (Reddy \& Stanford 2015), which uses ProsodyLab (Gorman, Howell, \& Wagner, 2011) and FAVE (Rosenfelder, Fruehwald, Evanini, \& Yuan 2011)
hand-corrected boundaries and extracted formants myself

FORMANT EXTRACTION

boundaries can be arbitrary

FORMANT EXTRACTION

boundaries can be arbitrary
formants extracted at 15 points along the vowel+liquid duration
25% point used for now (reasoning in appendix slides)

Bark normalized (Traunmüller 1997) Lobanov not ideal since not all vowels are present (Thomas \& Kendall 2007-2015)

Results

Pre-Laterals: Minimal Pairs

POOL is higher

PULP is lower and fronter

(statistics in appendix slides)

PULL $=$ POLE

(independent two-sided t-tests)
$F 1: t_{(215.15)}=0.13, p=0.89$
F2: $t_{(253.56)}=2.50, p=0.01$
Pillai score: 0.02 (cf. Hay, Warren, \& Drager 2006, Hall-Lew 2010, Nycz \& Hall-Lew 2013)
Bhattacharyya's affinity: 0.97
(cf. Bhattacharyya 1943, Calenge 2006, Johnson 2015)

Pre-Laterals: Minimal Pairs

POOL is higher
PULP is lower and fronter
(statistics in appendix slides)

PULL $=$ POLE

(independent two-sided t-tests)
$F 1: t_{(215.15)}=0.13, p=0.89$
F2: $t_{(253.56)}=2.50, p=0.01$
Pillai score: 0.02 (cf. Hay, Warren, \& Drager 2006, Hall-Lew 2010, Nycz \& Hall-Lew 2013)
Bhattacharyya's affinity: 0.97
(cf. Bhattacharyya 1943, Calenge 2006, Johnson 2015)

Pre-Laterals: Word List

PULL $=$ POLE

(independent two-sided t-tests)
$F 1: t_{(191.45)}=2.06, p=0.04$
$F 2: t_{(212.96)}=3.88, p<0.001$
Pillai score: 0.07
Bhattacharyya's affinity: 0.95

Pre-Laterals: Perception

\% = pairs reported merged

hesitant responses

Pre-Rhotics: Word List

MERRY $=$ MARRY—no doubt about it

MARY slightly higher than M\{E,A\}RRY (independent one-sided t-tests)
F1: $t_{(175.87)}=-6.44, p<0.001$
F2: $t_{(188.15)}=4.36, p<0.001$
Pillai score: 0.20
Bhattacharyya's affinity: 0.90

Pre-Rhotics: Minimal Pairs

(near-)complete merger

hint of a three-way distinction

Pre-Rhotics: Minimal Pairs

(near-)complete merger
hint of a three-way distinction
slight MARY~MARRY distinction
(independent one-sided t-tests)
$F 1: t_{(212.07)}=-4.11, p<0.001$
F2: $t_{(257.82)}=2.67, p=0.004$
Pillai score: 0.13
Bhattacharyya's affinity: 0.94

Pre-Rhotics: Minimal Pairs

(near-)complete merger
hint of a three-way distinction
slight MARY~MARRY distinction
(independent one-sided t-tests)
$F 1: t_{(212.07)}=-4.11, p<0.001$
F2: $t_{(257.82)}=2.67, p=0.004$
Pillai score: 0.13
Bhattacharyya's affinity: 0.94
"phoneme continuum"?
(see appendix slides)

Pre-Rhotics: Perception

confidently answered
$\operatorname{MARY}(/ e /)=\operatorname{MERRY}(/ \varepsilon /): 98 \%$

MARY (/e/) = MARRY (/æ/): 99\%

MERRY (/દ/) = MARRY (/æ/): 97\%

Overview

	word list	POLE minimal pairs	MARY vs. MERRY/MARRY word list minimal pairs	
production	"merged"	merged	distinct	phoneme continuum
speaker intuition	23\% reported merged		98\% reported merged	

clear case of "near-merger" (Labov et al. 1972, Labov et al. 1991, Di Paolo 1992, Bowie 2001, etc.)
MARY-MERRY/MARRY: distinct in production, merged in perception
PULL-POLE: merged in production, distinct in perception

CONCLUSION

Cowlitz County natives merge PULL and POLE while maintaining a distinction between MARY and MERRY/MARRY.

Hypothesis 1: X complete MARY-MERRY-MARRY merger
Hypothesis 2: X separation of POOL, PULL, POLE, and PULP
Hypothesis 3: \checkmark production/intuition mismatch awareness of possible distinction affecting intuition?

Ongoing changes in Cowlitz County

References

Arnold, Lacey R. 2014. Production and perception of the pre-lateral, non-low, back vowel merger in northeast Ohio. The Journal of the Acoustical Society of America 135(4). 2425-2425.
Becker, Kara, Anna Aden, Katelyn Best, Rena Dimes, Juan Flores \& Haley Jacobson. 2013. Keep Portland weird: Vowels in Oregon English. Paper presented at the New Ways of Analyzing Variation (NWAV) 42, Pittsburgh.
Baker, Wendy \& David Bowie. 2010. Religious affiliation as a correlate of linguistic behavior. University of Pennsylvania Working Papers in Linguistics 15(2). 2.
Bhattachayya, A. 1943. On a measure of divergence between two statistical population defined by their population distributions. Ietin Calcutta Mathematical Society 35. 99-109.
Bowie, David. 2001. Dialect Contact and Dialect Change: The Effect of Near-Mergers. University of Pennsylvania Working Papers in Linguistics 7(3). 3 .
Calenge, Clément. 2006. The package "adehabitat" for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197(3-4). 516-519. doi:10.1016/j.ecolmodel.2006.03.017
Foster, David William \& Robert J. Hoffman. 1966. Some observations on the vowels of Pacific Northwest English (Seattle area) American Speech. 119-122. doi:10.2307/453130
Freeman, Valerie. 2014. Bag, beg, bagel: Prevelar raising and merger in Pacific Northwest English. University of Washington Working Papers in Linguistics 32.
Gorman, Kyle, Jonathan Howell \& Michael Wagner. 2011. Prosodylab-Aligner: A Tool for Forced Alignment of Laboratory Speech Canadian Acoustics 39(3). 192-193.
Hall-Lew, Lauren. 2010. Improved representation of variance in measures of vowel merger. Paper presented at the 159 th Meeting Acoustical Society of America/NOISE-CON 2010, Baltimore, MD
Hay, Jennifer, Paul Warren \& Katie Drager. 2006. Factors influencing speech perception in the context of a merger-in-progress. , Jennifer, Paul Warren \& Katie Drager. 2006. Factors influencing speech perception in the context of a mer1
Journal of Phonetics 34(4). (Modelling Sociophonetic Variation). $458-484$. doi:10.1016/j.wocn.2005.10.001
Johnson, Daniel Ezra. 2015. Quantifying vowel overlap with Bhattacharyya's affinity. Paper presented at the New Ways of Analyzing Variation (NWAV44), Toronto.
Labov, William, Mark Karen \& Corey Miller. 1991. Near-mergers and the suspension of phonemic contrast. Language Variation and Change 3(1). 33-74. doi:10.1017/S0954394500000442.
Labov, William, Malcah Yaeger \& Richard Steiner. 1972. A quantitative study of sound change in progress. . Vol. 1. US Regional survey
Nycz, Jennifer \& Lauren Hall-Lew. 2013. Best practices in measuring vowel merger. Proceedings of Meetings on Acoustics 20(1). 060008. doi:10.1121/1.4894063.
 presented at the New Ways of Analyzing Variation (NWAV) 43, Chicago.
abov, William, Ingrid Rosenfelder \& Josef Fruehwald. 2013. One hundred years of sound change in Philadelphia: Linear incrementation, reversal, and reanalysis. Language 89(1). 30-65
Paolo, Marianna Di. 1992. Hypercorrection in response to the apparent merger of (\supset) and (α) in Utah english. Language \& Communication 12(3). 267-292. doi:10.1016/0271-5309(92)90017-4
Reddy, Sravana \& James N. Stanford. 2015. Toward completely automated vowel extraction: Introducing DARLA. Linguistics Vanguard 0(0). doi:10.1515/lingvan-2015-0002 (26 October, 2015)
Reed, Carroll E. 1952. The Pronunciation of English in the State of Washington. American Speech 27(3). 186-189. oi:10.2307/453476
Reed, Carroll E. 1956. Washington Words. Publication of the American Dialect Society 25(1). 3-11. doi:10.1215/-25-1-3. Reed, Carroll E. 1957. Word geography of the Pacific Northwest. Orbis 6. 86-93,
Reed, Carroll E. 1961. The Pronunciation of English in the Pacific Northwest. Language 37(4). 559-564. doi:10.2307/411357. Riebold, John Matthew. 2015. The Social distribution of a regional change: /æg, $\mathrm{\varepsilon g}$, eg/ in Washington State. Seattle: University of Washington PhD dissertation.
Rosenfelder, Ingrid; Fruehwald, Joe; Evanini, Keelan and Jiahong Yuan. 2011. FAVE (Forced Alignment and Vowel Extraction) Program Suite. http://fave.ling.upenn.edu
Strelluf, Christopher. 2016. Overlap among back vowels before /// in Kansas City. Language Variation and Change 28(3). 379-407. doi:10.1017/S0954394516000144.
Stanley, Joseph A. 2016. Pacific Northwest English: Historical Overview and Current Directions. The University of Georgia Working Papers in Linguistics 3.
Thomas, Charles Kenneth. 1958. An Introduction to the Phonetics of American English. 2nd ed. New York
Thomas, Erik R. \& Tyler Kendall (2007-2015). "NORM's Vowel Normalization Methods (v. 1.1)" Webpage. Accessed November 16, 2016. http://lingtools.uoregon.edu/norm/norm1_methods.php.

Traunmüler, Hartmut. 1997. Auditory scales of frequency representation. Stockholms universitet: Instituionen för lingvistik http://www2.ling.su.se/staff/hartmut/bark.htm (17 November, 2016).
Wassink, Alicia Beckford, Robert Squizzero, Mike Scanlon, Rachel Schirra \& Jeff Conn. 2009. Effects of Style and Gender on Fronting and Raising of $/ \ngtr / / / \mathrm{e}: /$ and $/ \varepsilon /$ before $/ \mathrm{g} /$ in Seattle English. Paper presented at the New Ways of Analyzing Variation (NWAV) 38, Ottawa
Ward, Michael. 2003. Portland dialect study: The fronting of/ow, u, uw/ in Portland, Oregon. Portland State University Master's Thesis.

Joey Stanley
University of Georgia
joeystan@uga.edu @joey_stan
joeystanley.com

Special thanks to Cathy Jones for invaluable help in finding research participants, to the University of Georgia Graduate School Dean's Award for funding the fieldwork, and to both the UGA Linguistics Program and the UGA Graduate School for travel funding.

This slideshow available at joeystanley.com/ADS2017

Appendices

Word List Items

These were embedded psuedorandomly in a 160 -item word list, with words targeting other research questions acting as fillers.

Participants often commented on how random the words seemed, so they likely did not catch on to the research questions these words targeted.

/er/	dairy, hairy, vary
/عr/	heritage, numeric, sheriff
/ær/	arrow, carry, narrate, parrot, sparrow
/ul/	cool, school
/vl/	fulcrum, pulpit, wool
/ol/	control, holster, stroll, whole
/n//	adult, culprit, vulture

The following words were excluded because they did not satisfy the required syllable type for their particular merger (open syllables for Mary-merry-marry and closed syllables for the prelaterals), which was only learned after data-collection:
bullet, (Coca-)Cola, gullible, hooligan, polar (bear), pulley, sullen, tulips, yuletide,

Minimal Pairs \& TRIpLETS

Pool Statistics

pool $=$ pull (word list)

(independent two-sided t-tests)
F1: $t_{(155.89)}=-13.99, p<0.001$
$F 2: t_{(144.62)}=-5.01, P<0.001$
Pillai score: 0.14
Bhattacharyya's affinity: 0.60

pool $=$ pole (word list)

(independent two-sided t-tests)
$F 1: t_{(160.853)}=-13.47, p<0.001$
$F 2: t_{(158.27)}=-1.27, P=0.205$
Pillai score: 0.13
Bhattacharyya's affinity: 0.60

pool \neq pulp (word list)

(independent two-sided t-tests)
F1: $t_{(153.79)}=-17.37, p<0.001$
F2: $t_{(154.47)}=-10.52, p<0.001$
Pillai score: 0.24
Bhattacharyya's affinity: 0.47

This is admitedly interesting. /vl/ is a bit fronter in the To be expected: /ul/ is the same backness as /ol/ minimal pairs than in the word list.
pool \neq pole (minimal pairs) pool \neq pulp (minimal pairs)
(independent two-sided t-tests)
$F 1: t_{(517.85)}=-20.35, p<0.001$
$F 2: t_{(444.58)}=1.89, p=0.059$
Pillai score: 0.15
Bhattacharyya's affinity: 0.70
(independent two-sided t-tests)
F1: $t_{(268.94)}=-23.73, p<0.001$
F2: $t_{(382.35)}=-9.27, p<0.001$
Pillai score: 0.25
Bhattacharyya's affinity: 0.53

Pulp Statistics

pulp \neq pool (word list)	pulp \neq pull (word list)	pulp \neq pole (word list)
(see previous slide)	(independent two-sided t -tests)	(independent two-sided t -tests)
	F1: $t_{(182.43)}=4.04, p<0.001$	F1: $t_{(175.92)}=6.31, p<0.001$
	$F 2: t_{(167.19)}=6.52, p<0.001$	$F 2: t_{(177.14)}=9.71, p<0.001$
	Pillai score: 0.06	Pillai score: 0.09
	Bhattacharyya's affinity: 0.84	Bhattacharyya's affinity: 0.74
$\underset{\text { (see previous slide) }}{\text { pulp }} \underset{\operatorname{pool}}{\text { pol }}$	pulp \neq pull (minimal pairs)	pulp \neq pole (minimal pairs)
	(independent two-sided t -tests)	(independent two-sided t -tests)
	F1: $\mathrm{t}_{285.81)}=8.33, \mathrm{p}<0.001$	$F 1: t_{\text {[24.73] }}=10.13, \mathrm{p}<0.001$
	F2: $\mathrm{t}_{288.14)}=8.74, p<0.001$	$F 2: t_{(312.02)}=12.69, p<0.001$
	Pillai score: 0.07	Pillai score: 0.10
	Bhattacharyya's affinity: 0.82	Bhattacharyya's affinity: 0.79

"Phoneme Continuum" Statistics

Mary $=$ merry

(independent one-sided t-tests)
$F 1: t_{(361.44)}=-2.1 \sqrt{p=0.012}$
$F 2: t_{(313.141)}=2.20, p=0.014$
Pillai score: 0.03
Bhattacharyya's affinity: 0.98
merry \neq marry
(independent one-sided t-tests)
$F 1: t_{(210.088)}=-2.54, p=0.994$
F2: $t_{(231.412)}=0.87, p=0.807$
Pillai score: 0.03
Bhattacharyya's affinity: 0.98

No significance.

Mary $=$ marry

(independent one-sided ttests)
$F 1: t_{(212.07)}=-4.11 p<0.001$
F2: $t_{(257.82)}=2.6 \lambda p=0.004$
Pillai score: 0.13
Bhattacharyya's affinity 0.94

WHY THE 25\% POINT?

WHY THE 25\% POINT?

past transitional formants

