
orcid.org/0000-0002-9185-0048 1

Reshaping and transforming your data
The tidyverse Part 2

Joey Stanley
Doctoral Candidate in Linguistics, University of Georgia
joeystanley.com

orcid.org/0000-0002-9185-0048

Presented at the UGA Willson Center DigiLab
Friday, March 23, 2018

This is the ninth installment of the R workshop series in Spring 2018 and the second workshop
that introduces functions from the “tidyverse.” This document will cover these introductory
topics: (1) loading the familiarizing yourself with the data used in this workshop; (2) various
ways of merging datasets together; (3) summarizing your data by group; and (4) reshaping your
data from tall to wide and vice versa.

Download this PDF from my website at

joeystanley.com/r2018

An Introduction to R: Part 2
 by Joseph A. Stanley is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License.	

orcid.org/0000-0002-9185-0048 2

1 INTRODUCTION

This is the second in a two-part series of Tidyverse workshops. In the last one1 we looked at
three main topics:

• Getting data in and out of R

• Tidying columns (including reordering, renaming, adding, removing, and modifying)

• Filtering

These are very important things you should be relatively comfortable with, regardless of what
you use R for. They’re also relatively easy topics for you to grasp because, for the most part, you
probably know how to do them just as well in Excel. In fact, you might be wondering why bother
learning R and tidyverse functions when they can just do what Excel does…

Today’s workshop covers some more advanced topics that are a little more difficult to
conceptualize and, crucially, are much more difficult to do in Excel. In fact, I don’t know if Excel
can even do some of the stuff that we’ll be learning today—and we’ll be able to do it in just one
line of code! The three main topics are merging, summarizing, and reshaping your data. It took
me a while to get the hang of them, but boy once you do they sure are some sweet skills to have
up your sleeve.

As always, before we get into anything, let’s load the tidyverse package.

library(tidyverse)

1.1 DATA

While I generally never watch sporting events, for some reason I go crazy during the Olympics
and watch way more than I should. Given that the Winter Olympics just ended, I thought we
could take a look at data from previous Winter Olympics. Today we’ll work with data from all
the Winter Olympics from the first one in 1924 until the second most recent one in Sochi in
2014. This data was originally downloaded from Kaggle.com2 and then I modified it a little bit
to make it appropriate for this workshop.

The data is stored in three separate spreadsheets, which you can download directly from my
website using the links below.

The first is a spreadsheet of all the events that occurred each year. It contains the following
columns:

1 http://joeystanley.com/downloads/180302-tidyverse_part1.html
2 https://www.kaggle.com/the-guardian/olympic-games/data

orcid.org/0000-0002-9185-0048 3

1. Year: The year the event took place. Some events have been discontinued and others added,
so the list of specific events changes from year to year. For example, Military patrol ended
in 1948 while mixed doubles curling was added in 2018.

2. Sport: The broad terms for the different sports in the games (Biathlon, Bobsleigh, Curling,
Ice Hockey, Luge, Skating, and Skiing)

3. Discipline: A more narrow term within each sport. For example, Skeleton and Bobsleigh
are disciplines within the sport Bobsleigh, or Figure Skating, Short Track Speed Skating,
and Speed Skating are disciplines within the sport Skating.

4. Event: The name of the specific event that an athlete can medal in. So within the Figure
Skating discipline, there are four events: Ice Dancing, Individual, Pairs, and Team.

Unfortunately, with the data that I could find, I don’t have information on mixed events, such as
Mixed Curling or Mixed Relay Biathlon, which have both men and women on a team. However,
this can mostly be inferred by the gender of the athlete and the name of the event, which tend
of have the word mixed in it (Mixed Relay Biathlon).

Let’s go ahead and read that data in so we can get an idea of what we’re looking at.

events <- read_csv("http://joeystanley.com/data/events.csv")
events

A tibble: 716 x 4
Year Sport Discipline Event
<int> <chr> <chr> <chr>
1 2014 Biathlon Biathlon 10KM
2 2010 Biathlon Biathlon 10KM
3 2006 Biathlon Biathlon 10KM
4 2002 Biathlon Biathlon 10KM
5 1998 Biathlon Biathlon 10KM
6 1994 Biathlon Biathlon 10KM
7 1992 Biathlon Biathlon 10KM
8 1988 Biathlon Biathlon 10KM
9 1984 Biathlon Biathlon 10KM
10 1980 Biathlon Biathlon 10KM
... with 706 more rows

The next dataset has information about all the athletes that got at least one medal. This
spreadsheet has six straightforward columns containing the person’s name, country, gender,
discipline, event, year, and medal.

athletes <- read_csv("http://joeystanley.com/data/athletes.csv")
athletes

A tibble: 5,770 x 7
Athlete Country Gender Discipline
<chr> <chr> <chr> <chr>

orcid.org/0000-0002-9185-0048 4

1 AAHLBERG, Mats SWE Men Ice Hockey
2 AAHLEN, Thomas SWE Men Ice Hockey
3 AALAND, Per Knut NOR Men Cross Country Skiing
4 AALTONEN, Juhamatti FIN Men Ice Hockey
5 AAMODT, Kjetil Andre NOR Men Alpine Skiing
6 AAMODT, Kjetil Andre NOR Men Alpine Skiing
7 AAMODT, Kjetil Andre NOR Men Alpine Skiing
8 AAMODT, Kjetil Andre NOR Men Alpine Skiing
9 AAMODT, Kjetil Andre NOR Men Alpine Skiing
10 AAMODT, Kjetil Andre NOR Men Alpine Skiing
... with 5,760 more rows, and 3 more variables: Event <chr>, Year <int>,
Medal <chr>

Finally, let’s read in data about the locations each year. This is a spreadsheet that has columns
for the year, city, country, and continent where the games happened. Let’s read that in now.

years <- read_csv("http://joeystanley.com/data/years.csv")
years

A tibble: 24 x 4
Year City Country Continent
<int> <chr> <chr> <chr>
1 2022 Beijing China Asia
2 2018 Pyeongchang South Korea Asia
3 2014 Sochi Russia Asia
4 2010 Vancouver Canada North America
5 2006 Turin Italy Europe
6 2002 Salt Lake City United States North America
7 1998 Nagano Japan Asia
8 1994 Lillehammer Norway Europe
9 1992 Albertville France Europe
10 1988 Calgary Canada North America
... with 14 more rows

Okay, so we have three spreadsheets that are all kinda related. So without further ado, let’s get
to combining them.

2 JOINING DATASETS

But first, why bother have all this data stored in different spreadsheets in the first place? Why
not have a single file that contains all the athletes info, the events, and the location? The reason
for it is because splitting them into three reduces the amount of redundant information in each
spreadsheet.

Let’s say we had a spreadsheet of all the athletes names, years, and city where the Olympics were
held. We would have 5,770 rows and three columns. But, in the column with the city would be

orcid.org/0000-0002-9185-0048 5

really redundant. You’d have Sochi, South Korea, and Asia there hundreds of times, right next to
a 2014. If we split the file into two, with the athlete name and year in one, and then a smaller
one with just the year and city in another, we only need to type Sochi once. Yes, we repeat the
year, but the number of repeats this way is far fewer than the repeats in a monster spreadsheet.
In the end, you can still easily recover the data, and the overall file size of of the spreadsheets is
much smaller than the size of a giant one.

Merging datasets might remind you of databases. In fact, they’re essentially the same thing! In a
database, you have two or more spreadsheets that are linked in some way, usually by some sort
of key identifier. With the various *_join functions in dyplr, you can connect datasets in a way
very reminiscent of how you might do it in database software.

2.1 LEFT_JOIN AND RIGHT_JOIN

So let’s start by taking the athlete data and adding the city names. To get an idea of how we
might merge them, let’s look at them one more time:

athletes

A tibble: 5,770 x 7
Athlete Country Gender Discipline
<chr> <chr> <chr> <chr>
1 AAHLBERG, Mats SWE Men Ice Hockey
2 AAHLEN, Thomas SWE Men Ice Hockey
3 AALAND, Per Knut NOR Men Cross Country Skiing
4 AALTONEN, Juhamatti FIN Men Ice Hockey
5 AAMODT, Kjetil Andre NOR Men Alpine Skiing
6 AAMODT, Kjetil Andre NOR Men Alpine Skiing
7 AAMODT, Kjetil Andre NOR Men Alpine Skiing
8 AAMODT, Kjetil Andre NOR Men Alpine Skiing
9 AAMODT, Kjetil Andre NOR Men Alpine Skiing
10 AAMODT, Kjetil Andre NOR Men Alpine Skiing
... with 5,760 more rows, and 3 more variables: Event <chr>, Year <int>,
Medal <chr>

years

A tibble: 24 x 4
Year City Country Continent
<int> <chr> <chr> <chr>
1 2022 Beijing China Asia
2 2018 Pyeongchang South Korea Asia
3 2014 Sochi Russia Asia
4 2010 Vancouver Canada North America
5 2006 Turin Italy Europe
6 2002 Salt Lake City United States North America
7 1998 Nagano Japan Asia
8 1994 Lillehammer Norway Europe
9 1992 Albertville France Europe

orcid.org/0000-0002-9185-0048 6

10 1988 Calgary Canada North America
... with 14 more rows

What do these two spreadsheets have in common? Well, they both have a column with the years.
Coincidentally, in both spreadsheets, this column is named Year. (Identical names across
spreadsheets, while not required, do make this kind of work easier.) So, if we want to add the
city name to the athlete data, we can use the left_join function. I’m going to just select the
relevant columns right now to make it clearer.

athletes %>%
 select(Athlete, Year) %>%
 left_join(years, by = "Year")

A tibble: 5,770 x 5
Athlete Year City Country Continent
<chr> <int> <chr> <chr> <chr>
1 AAHLBERG, Mats 1980 Lake Placid United States North America
2 AAHLEN, Thomas 1984 Sarajevo Yugoslavia Europe
3 AALAND, Per Knut 1980 Lake Placid United States North America
4 AALTONEN, Juhamatti 2014 Sochi Russia Asia
5 AAMODT, Kjetil Andre 1992 Albertville France Europe
6 AAMODT, Kjetil Andre 1992 Albertville France Europe
7 AAMODT, Kjetil Andre 1994 Lillehammer Norway Europe
8 AAMODT, Kjetil Andre 1994 Lillehammer Norway Europe
9 AAMODT, Kjetil Andre 1994 Lillehammer Norway Europe
10 AAMODT, Kjetil Andre 2002 Salt Lake City United States North America
... with 5,760 more rows

So, what we’ve done is merged the two datasets. Wherever a year was found in the Year column
of the Athlete dataset, it added the city name from the years dataset. That’s why we had to
specify the argument by = "Year". If you’ve ever used lookup tables in Excel, this is essentially
what we’re doing.

So why is it called left_join? There’s a more technical explanation in §13.4.4 of R for data
Science3, but it essentially means we’re adding information to the dataframe on the left (or, in
this case, the data frame that’s being piped into the function). If there’s a year in the left
dataframe (athletes) that is not found in the right one (years), you’ll see an NA in the new
City, Country, and Continent columns when they’re combined. However, if there’s a year in
the years dataset that is not in the athletes dataframe, no harm done and it’ll be excluded
from the combined dataset.

You can think of the years dataset as a dictionary, and the Year column in the athletes dataset
as the stuff we’re looking up. The cool part is that rather than just retrieving one piece of

3 http://r4ds.had.co.nz/relational-data.html#mutating-joins

orcid.org/0000-0002-9185-0048 7

information, if the year dataset had more columns, all of them would be appended on to the
combined one.

Since there’s a left_join, there is also a right_join, which does the logical opposite. We could
get the exact same spreadsheet using right_join by moving some things around:

years %>%
 right_join(athletes, by = "Year")

A tibble: 5,770 x 10
Year City Country.x Continent Athlete
<int> <chr> <chr> <chr> <chr>
1 1980 Lake Placid United States North America AAHLBERG, Mats
2 1984 Sarajevo Yugoslavia Europe AAHLEN, Thomas
3 1980 Lake Placid United States North America AALAND, Per Knut
4 2014 Sochi Russia Asia AALTONEN, Juhamatti
5 1992 Albertville France Europe AAMODT, Kjetil Andre
6 1992 Albertville France Europe AAMODT, Kjetil Andre
7 1994 Lillehammer Norway Europe AAMODT, Kjetil Andre
8 1994 Lillehammer Norway Europe AAMODT, Kjetil Andre
9 1994 Lillehammer Norway Europe AAMODT, Kjetil Andre
10 2002 Salt Lake City United States North America AAMODT, Kjetil Andre
... with 5,760 more rows, and 5 more variables: Country.y <chr>,
Gender <chr>, Discipline <chr>, Event <chr>, Medal <chr>

The order of the columns are a little bit different, but the data is all there. In my own code, I
don’t use right_join as much, I guess because conceptually I like left_join better, but it’s
completely up to you.

So what happens if you do the opposite? Let’s do a left_join with years on the left and
athletes on the right.

years %>%
 left_join(athletes, by = "Year")

A tibble: 5,772 x 10
Year City Country.x Continent Athlete Country.y
<int> <chr> <chr> <chr> <chr> <chr>
1 2022 Beijing China Asia <NA> <NA>
2 2018 Pyeongchang South Korea Asia <NA> <NA>
3 2014 Sochi Russia Asia AALTONEN, Juhamatti FIN
4 2014 Sochi Russia Asia ABBOTT, Jeremy USA
5 2014 Sochi Russia Asia ADAMS, Vicki GBR
6 2014 Sochi Russia Asia AGOSTA, Meghan CAN
7 2014 Sochi Russia Asia ALDER, Janine SUI
8 2014 Sochi Russia Asia ALFREDSSON, Daniel SWE
9 2014 Sochi Russia Asia ALTMANN, Livia SUI
10 2014 Sochi Russia Asia ALVAREZ, Eduardo USA
... with 5,762 more rows, and 4 more variables: Gender <chr>,
Discipline <chr>, Event <chr>, Medal <chr>

orcid.org/0000-0002-9185-0048 8

Turns out, we get essentially the same thing! Just with a couple rows with NAs at the top. The
reason for why they’re very similar is because the years in both spreadsheets nearly perfectly
match each other. They’re not perfect (the years data has 2018 and 2022 in them, but we have
no information about those years in the athletes data).

So what makes left_join and right_join different is how they treat missing data. To
illustrate, let’s create subsets that are more drastically different. First, let’s say we only remember
the cities for the last seven Winter Olympics:

last_7_cities <- years %>%
 filter(Year >= 1998)
last_7_cities

A tibble: 7 x 4
Year City Country Continent
<int> <chr> <chr> <chr>
1 2022 Beijing China Asia
2 2018 Pyeongchang South Korea Asia
3 2014 Sochi Russia Asia
4 2010 Vancouver Canada North America
5 2006 Turin Italy Europe
6 2002 Salt Lake City United States North America
7 1998 Nagano Japan Asia

And then let’s say we only had information on the women who medaled in individual figure
skating in the nineties (1992, 1994, 1998):

skaters_90s <- athletes %>%
 filter(Year >= 1990, Year <= 2000,
 Discipline == "Figure skating", Event == "Individual",
 Gender == "Women")
skaters_90s

A tibble: 9 x 7
Athlete Country Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <chr> <int> <chr>
1 BAIUL, Oksana UKR Women Figure skating Individual 1994 Gold
2 CHEN, Lu CHN Women Figure skating Individual 1994 Bronze
3 CHEN, Lu CHN Women Figure skating Individual 1998 Bronze
4 ITO, Midori JPN Women Figure skating Individual 1992 Silver
5 KERRIGAN, Nancy USA Women Figure skating Individual 1992 Bronze
6 KERRIGAN, Nancy USA Women Figure skating Individual 1994 Silver
7 KWAN, Michelle USA Women Figure skating Individual 1998 Silver
8 LIPINSKI, Tara USA Women Figure skating Individual 1998 Gold
9 YAMAGUCHI, Kristi USA Women Figure skating Individual 1992 Gold

So we have two datasets that overlap partially, but not completely. Let’s see what happens when
we join them. Let’s try to add the city name to the athletes’ information using left_join, where
the skaters_90s data comes first:

orcid.org/0000-0002-9185-0048 9

left_join(skaters_90s, last_7_cities, by = "Year")

A tibble: 9 x 10
Athlete Country.x Gender Discipline Event Year
<chr> <chr> <chr> <chr> <chr> <int>
1 BAIUL, Oksana UKR Women Figure skating Individual 1994
2 CHEN, Lu CHN Women Figure skating Individual 1994
3 CHEN, Lu CHN Women Figure skating Individual 1998
4 ITO, Midori JPN Women Figure skating Individual 1992
5 KERRIGAN, Nancy USA Women Figure skating Individual 1992
6 KERRIGAN, Nancy USA Women Figure skating Individual 1994
7 KWAN, Michelle USA Women Figure skating Individual 1998
8 LIPINSKI, Tara USA Women Figure skating Individual 1998
9 YAMAGUCHI, Kristi USA Women Figure skating Individual 1992
... with 4 more variables: Medal <chr>, City <chr>, Country.y <chr>,
Continent <chr>

If you look through the City column, you’ll notice that Nagano is the only one there, and the
rest of the rows have NAs. So it kept all the skaters’ information, and only added the city if it
was in the “dictionary.” Now let’s try a right_join:

right_join(skaters_90s, last_7_cities, by = "Year")

A tibble: 9 x 10
Athlete Country.x Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <chr> <int> <chr>
1 <NA> <NA> <NA> <NA> <NA> 2022 <NA>
2 <NA> <NA> <NA> <NA> <NA> 2018 <NA>
3 <NA> <NA> <NA> <NA> <NA> 2014 <NA>
4 <NA> <NA> <NA> <NA> <NA> 2010 <NA>
5 <NA> <NA> <NA> <NA> <NA> 2006 <NA>
6 <NA> <NA> <NA> <NA> <NA> 2002 <NA>
7 CHEN, Lu CHN Women Figure skating Individual 1998 Bronze
8 KWAN, Michelle USA Women Figure skating Individual 1998 Silver
9 LIPINSKI, Tara USA Women Figure skating Individual 1998 Gold
... with 3 more variables: City <chr>, Country.y <chr>, Continent <chr>

So now things look different. Because the last_7_cities dataframe was the “main” one, it kept
all the data in it, specifically the year. That includes six years for which there was no athlete data.
So, in the first six rows, we have NAs in all the columns except Year. But then, it has all the
athletes for the 1998 year for which we have data because that was the only one that overlapped
between the two.

The moral of the story is that if you’ve got very clean data where the info from one perfectly
matches the other, as far as I can tell there’s no substantial difference between left_join and
right_join other than the order is different (which you can quickly change with arrange).
However, if there is a mismatch, the two functions are very different and you have to think about
what you want your result to be like.

orcid.org/0000-0002-9185-0048 10

2.2 INNER_JOIN AND FULL_JOIN

Okay, so what if you’re aware of mismatches between your spreadsheets. Likely, there will be.
And you know there’re going to be some NAs. Is there a way to remove them?

Sure! That’s what inner_join is for! Let’s do exactly what we did above, but using inner_join
instead of right_join.

inner_join(skaters_90s, last_7_cities, by = "Year")

A tibble: 3 x 10
Athlete Country.x Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <chr> <int> <chr>
1 CHEN, Lu CHN Women Figure skating Individual 1998 Bronze
2 KWAN, Michelle USA Women Figure skating Individual 1998 Silver
3 LIPINSKI, Tara USA Women Figure skating Individual 1998 Gold
... with 3 more variables: City <chr>, Country.y <chr>, Continent <chr>

Here, all we get are the figure skaters only from 1998, because that’s the only year that overlaps
between the two datasets. If we do inner_join with the two datasets reversed, as far as I’m
aware the result is the exact same but with a different order to the columns:

inner_join(last_7_cities, skaters_90s, by = "Year")

A tibble: 3 x 10
Year City Country.x Continent Athlete Country.y Gender
<int> <chr> <chr> <chr> <chr> <chr> <chr>
1 1998 Nagano Japan Asia CHEN, Lu CHN Women
2 1998 Nagano Japan Asia KWAN, Michelle USA Women
3 1998 Nagano Japan Asia LIPINSKI, Tara USA Women
... with 3 more variables: Discipline <chr>, Event <chr>, Medal <chr>

You might expect there to be an outer_join function which would keep just the athletes whose
years are not in the years dataframe and the years from the last_7_cities data frame with no
athletes. However, such a function does not exist as far as I’m aware, and honestly I can’t think
of a case where this might be useful.

However, there is full_join, which will keep everything from both.

full_join(skaters_90s, last_7_cities, by = "Year")

A tibble: 15 x 10
Athlete Country.x Gender Discipline Event Year
<chr> <chr> <chr> <chr> <chr> <int>
1 BAIUL, Oksana UKR Women Figure skating Individual 1994
2 CHEN, Lu CHN Women Figure skating Individual 1994
3 CHEN, Lu CHN Women Figure skating Individual 1998
4 ITO, Midori JPN Women Figure skating Individual 1992
5 KERRIGAN, Nancy USA Women Figure skating Individual 1992
6 KERRIGAN, Nancy USA Women Figure skating Individual 1994

orcid.org/0000-0002-9185-0048 11

7 KWAN, Michelle USA Women Figure skating Individual 1998
8 LIPINSKI, Tara USA Women Figure skating Individual 1998
9 YAMAGUCHI, Kristi USA Women Figure skating Individual 1992
10 <NA> <NA> <NA> <NA> <NA> 2022
11 <NA> <NA> <NA> <NA> <NA> 2018
12 <NA> <NA> <NA> <NA> <NA> 2014
13 <NA> <NA> <NA> <NA> <NA> 2010
14 <NA> <NA> <NA> <NA> <NA> 2006
15 <NA> <NA> <NA> <NA> <NA> 2002
... with 4 more variables: Medal <chr>, City <chr>, Country.y <chr>,
Continent <chr>

This dataframe has 15 rows because it keeps all the athletes from skaters_90s (and puts NAs
for those whose years are not in the last_7_cities data) and the remaining six years that have
no representation in the skaters_90s dataframe. I have not needed to use this particular
function, but you might find it useful.

2.3 USING JOINS TO FILTER DATA

There are two more join functions that are pretty slick. They take a sec to wrap your mind around,
but once you get them they’re really nice to be aware of.

The first is semi_join. This filters the data such that only rows in skaters_90s that have a
match in last_7_cities are kept.

semi_join(skaters_90s, last_7_cities, by = "Year")

A tibble: 3 x 7
Athlete Country Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <chr> <int> <chr>
1 CHEN, Lu CHN Women Figure skating Individual 1998 Bronze
2 KWAN, Michelle USA Women Figure skating Individual 1998 Silver
3 LIPINSKI, Tara USA Women Figure skating Individual 1998 Gold

This is slightly different from inner_join because the City, Country, and Continent columns
are not in the resulting dataframe. So it really is just a filter. Another way to do this is with %in%,
if that makes more sense conceptually.

skaters_90s %>%
 filter(Year %in% last_7_cities$Year)

A tibble: 3 x 7
Athlete Country Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <chr> <int> <chr>
1 CHEN, Lu CHN Women Figure skating Individual 1998 Bronze
2 KWAN, Michelle USA Women Figure skating Individual 1998 Silver
3 LIPINSKI, Tara USA Women Figure skating Individual 1998 Gold

orcid.org/0000-0002-9185-0048 12

The opposite of this is anti_join. This returns all the rows of the first dataframe that do not
have a match in the second. In other words, this shows us the data in the skaters_90s dataframe
from 1994 and 1992 because last_7_cities does not have data for 1994 and 1992.

anti_join(skaters_90s, last_7_cities, by = "Year")

A tibble: 6 x 7
Athlete Country Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <chr> <int> <chr>
1 BAIUL, Oksana UKR Women Figure skating Individual 1994 Gold
2 CHEN, Lu CHN Women Figure skating Individual 1994 Bronze
3 ITO, Midori JPN Women Figure skating Individual 1992 Silver
4 KERRIGAN, Nancy USA Women Figure skating Individual 1992 Bronze
5 KERRIGAN, Nancy USA Women Figure skating Individual 1994 Silver
6 YAMAGUCHI, Kristi USA Women Figure skating Individual 1992 Gold

This anti_join is super handy. There have been many times where I’ve needed to compare two
similar datasets that were each pretty big, but I knew there were a few discrepancies. With
anti_join I could isolate those with just a single line of code whereas some other way would
have been a lot more work.

3 SUMMARIZING

Working with large datasets is great, but sometimes we want to summarize what’s going on. In
this section, we look at the summarize function, especially in conjunction with group_by, which
will allow us to create some new summarized versions of your data.

Let’s start with our athletes dataframe. If we just peek at the first twelve lines, we can already
see that some athletes compete in multiple years and/or across different events.

athletes

A tibble: 5,770 x 7
Athlete Country Gender Discipline
<chr> <chr> <chr> <chr>
1 AAHLBERG, Mats SWE Men Ice Hockey
2 AAHLEN, Thomas SWE Men Ice Hockey
3 AALAND, Per Knut NOR Men Cross Country Skiing
4 AALTONEN, Juhamatti FIN Men Ice Hockey
5 AAMODT, Kjetil Andre NOR Men Alpine Skiing
6 AAMODT, Kjetil Andre NOR Men Alpine Skiing
7 AAMODT, Kjetil Andre NOR Men Alpine Skiing
8 AAMODT, Kjetil Andre NOR Men Alpine Skiing
9 AAMODT, Kjetil Andre NOR Men Alpine Skiing
10 AAMODT, Kjetil Andre NOR Men Alpine Skiing

orcid.org/0000-0002-9185-0048 13

... with 5,760 more rows, and 3 more variables: Event <chr>, Year <int>,
Medal <chr>

So for example, Kyetil Andre Aamodt of Norway medaled eight times in the Giant Slalom, Super-
G, Alpine Combined, and Downhill in 1992, 1994, 2002, and 2006. That’s a lot. Are there people
that did more than that? And if so, how can we tell?

This is exactly the sort of situation that the summarise is perfect for. Since we want to find the
information per person, we need to group the data by each person. We can do that first using the
group_by function. By itself this doesn’t do much, but it changes how R treats it under the hood.
But if we pipe this into summarise, we tell R to perform functions per group.

athletes %>%
 group_by(Athlete) %>%
 summarize()

A tibble: 3,761 x 1
Athlete
<chr>
1 AAHLBERG, Mats
2 AAHLEN, Thomas
3 AALAND, Per Knut
4 AALTONEN, Juhamatti
5 AAMODT, Kjetil Andre
6 AAS, Roald
7 AASLIN, Peter
8 ABBOTT, Jeremy
9 ABE, Masashi
10 ABEL, Clarence John
... with 3,751 more rows

Without any arguments, summarize simply lists the groups, meaning a list of all the athletes.
But we can add columns to this dataframe, similar to how mutate works. So if we want to simply
see how many rows in the dataframe belong to each of these groups, we can add a new arbitrarily
named column called num_of_medals and use the n() function to count how many there are.

athletes %>%
 group_by(Athlete) %>%
 summarize(num_of_medals = n())

A tibble: 3,761 x 2
Athlete num_of_medals
<chr> <int>
1 AAHLBERG, Mats 1
2 AAHLEN, Thomas 1
3 AALAND, Per Knut 1
4 AALTONEN, Juhamatti 1
5 AAMODT, Kjetil Andre 8
6 AAS, Roald 2
7 AASLIN, Peter 1

orcid.org/0000-0002-9185-0048 14

8 ABBOTT, Jeremy 1
9 ABE, Masashi 1
10 ABEL, Clarence John 1
... with 3,751 more rows

Okay, so that’s already interesting. But I don’t want to have to sift through 3,700 rows to find
out which has the most. Let’s add the arrange function to the end to put them in order of
num_of_medals. Since arrange normally sorts numbers from smallest to largest, and we actually
want to go from largest to smallest, we’ll do a reverse sort by simply adding a negative sign (it’s
just a hyphen -) before the name.

athletes %>%
 group_by(Athlete) %>%
 summarize(num_of_medals = n()) %>%
 arrange(-num_of_medals)

A tibble: 3,761 x 2
Athlete num_of_medals
<chr> <int>
1 BJOERNDALEN, Ole Einar 13
2 DAEHLIE, Björn 12
3 BELMONDO, Stefania 10
4 SMETANINA, Raisa 10
5 BJOERGEN, Marit 9
6 DISL, Uschi 9
7 EGOROVA, Ljubov 9
8 JERNBERG, Sixten 9
9 PECHSTEIN, Claudia 9
10 AAMODT, Kjetil Andre 8
... with 3,751 more rows

So Mr. Aamodt is indeed exceptional. Of all 3,700 medalists, only 16 have gotten 8 or more
medals in their career. But this sorting makes it clear that the person with the most medals is
one Ole Einar Bjoerndalen with a whopping 13 career medals.

We can use summarize to actually do more. We can look at specific columns within the now-
grouped athletes dataframe to get how many golds, silvers, and bronzes each person has won.
Since we’re referring to specific column, we can’t use n anymore, but we can just use the regular
sum function to add up how many rows in the Medal column are "Gold", etc.

athletes %>%
 group_by(Athlete) %>%
 summarize(golds = sum(Medal == "Gold"),
 silvers = sum(Medal == "Silver"),
 bronzes = sum(Medal == "Bronze"),
 num_of_medals = n()) %>%
 arrange(-num_of_medals)

orcid.org/0000-0002-9185-0048 15

A tibble: 3,761 x 5
Athlete golds silvers bronzes num_of_medals
<chr> <int> <int> <int> <int>
1 BJOERNDALEN, Ole Einar 8 4 1 13
2 DAEHLIE, Björn 8 4 0 12
3 BELMONDO, Stefania 2 3 5 10
4 SMETANINA, Raisa 4 5 1 10
5 BJOERGEN, Marit 6 2 1 9
6 DISL, Uschi 2 4 3 9
7 EGOROVA, Ljubov 6 3 0 9
8 JERNBERG, Sixten 4 3 2 9
9 PECHSTEIN, Claudia 5 2 2 9
10 AAMODT, Kjetil Andre 4 2 2 8
... with 3,751 more rows

Since this is a regular dataframe, we can then do other modifications to it. For example, the two
people that have each won 10 medals have slightly different distributions of what medals they
are. Raisa Smetanina has gotten 4 golds, 5 silvers, and 1 bronze while Stefania Belmondo has
gotten 2 golds, 3 silvers, and 5 bronzes. Objectively, the golds are harder to get, so raw medal
count might not be the most accurate picture of these athletes. Perhaps it might be better to give
extra weight to golds and less to bronzes. While the topic of exactly how to weight each medal
is a controversial and significantly alters the rankings4, we’ll stick with a simple one: Gold = 3,
Silver = 2, and Bronze = 1. So let’s use mutate on this new dataset to create a weighted score.

athletes %>%
 group_by(Athlete) %>%
 summarize(golds = sum(Medal == "Gold"),
 silvers = sum(Medal == "Silver"),
 bronzes = sum(Medal == "Bronze"),
 num_of_medals = n()) %>%
 mutate(medals_weighted = golds * 3 + silvers * 2 + bronzes) %>%
 arrange(-medals_weighted)

A tibble: 3,761 x 6
Athlete golds silvers bronzes num_of_medals
<chr> <int> <int> <int> <int>
1 BJOERNDALEN, Ole Einar 8 4 1 13
2 DAEHLIE, Björn 8 4 0 12
3 EGOROVA, Ljubov 6 3 0 9
4 BJOERGEN, Marit 6 2 1 9
5 SMETANINA, Raisa 4 5 1 10
6 PECHSTEIN, Claudia 5 2 2 9
7 JERNBERG, Sixten 4 3 2 9
8 GROSS, Ricco 4 3 1 8

4 https://www.nytimes.com/interactive/2018/02/14/upshot/which-country-leads-in-the-olympic-medal-count.html

orcid.org/0000-0002-9185-0048 16

Yeah, so this changes the order a lot. The top two are the same, but now Ljubov Egorva, who
“only” has nine medals is ranked higher than both of the athletes with 10 because they have won
more golds. Raisa Metanina is fifth according to this system, but our friend Stefania Belmondo
is now 19th.

Regardless of how you feel that the medals should be weighted, this shows that you can work
with this summarized table just as you could with any other dataset.

3.1.1 Your tu rn!

The Chal lenge
1. Instead of looking at how many medals there were per person, try seeing how many there

were per country.

2. Modify how the medals are weighted to Gold = 5, Silver = 3, and Bronze = 1 to see what
kinds of differences that makes in how the countires are ranked.

The So lut ion

To look at each country instead of each person, you would just use the group_by function on
the Country column instead of the Athlete column.

athletes %>%
 group_by(Country) %>%
 summarize(num_of_medals = n()) %>%
 arrange(-num_of_medals)

A tibble: 45 x 2
Country num_of_medals
<chr> <int>
1 USA 653
2 CAN 625
3 NOR 457
4 URS 440
5 FIN 434
6 SWE 433
7 GER 360
8 SUI 285
9 AUT 280
10 RUS 263
... with 35 more rows

We can see how this order changes when we weight medals differently:

athletes %>%
 group_by(Country) %>%
 summarize(golds = sum(Medal == "Gold"),
 silvers = sum(Medal == "Silver"),
 bronzes = sum(Medal == "Bronze"),
 num_of_medals = n()) %>%

orcid.org/0000-0002-9185-0048 17

 mutate(medals_weighted = golds * 5 + silvers * 3 + bronzes) %>%
 arrange(-medals_weighted)

A tibble: 45 x 6
Country golds silvers bronzes num_of_medals medals_weighted
<chr> <int> <int> <int> <int> <dbl>
1 CAN 315 203 107 625 2291
2 USA 167 319 167 653 1959
3 URS 250 97 93 440 1634
4 NOR 159 171 127 457 1435
5 SWE 127 129 177 433 1199
6 GER 137 126 97 360 1160
7 FIN 66 147 221 434 992
8 RUS 94 90 79 263 819
9 AUT 79 98 103 280 792
10 SUI 76 77 132 285 743
... with 35 more rows

So even though the USA leads in raw medal count, Canada has won almost twice as many golds.
Also, if you were to combine the Soviet Union URS and Russia RUS, they might take the lead.

3.2 COMBINING SUMMARIES WITH JOINS

Something that’s slightly frustrating about the output of summarize is that you can’t see other
metadata about the athletes. I’ve been referring to the athletes by name, but I don’t know their
gender or their country from the summary table alone. If you go under the assumption that their
gender or country was consistent across all their medals, you could get around this by using the
first function within summarize, which simply takes the first gender or country it sees with in
each group.

athletes %>%
 group_by(Athlete) %>%
 summarize(num_of_medals = n(),
 gender = first(Gender),
 country = first(Country)) %>%
 arrange(-num_of_medals)

A tibble: 3,761 x 4
Athlete num_of_medals gender country
<chr> <int> <chr> <chr>
1 BJOERNDALEN, Ole Einar 13 Men NOR
2 DAEHLIE, Björn 12 Men NOR
3 BELMONDO, Stefania 10 Women ITA
4 SMETANINA, Raisa 10 Women URS
5 BJOERGEN, Marit 9 Women NOR
6 DISL, Uschi 9 Women GER
7 EGOROVA, Ljubov 9 Women EUN
8 JERNBERG, Sixten 9 Men SWE

orcid.org/0000-0002-9185-0048 18

This is a workaround, but it’s potentially buggy. With this data, I think you can be reasonably
confident that there are no gender or country changes, but I don’t like going off of that
assumption, regardless of the data.

This is where the *_join functions really start to shine. Because these summary tables are
regular dataframes, we can save them and use them to filter the main dataframe. Let’s say we
want to look at only the athletes with 10 or more medals. Let’s create the summarized table,
filter it to just show those with 10 or more, and the save it into a new object called ten_plus.

ten_plus <- athletes %>%
 group_by(Athlete) %>%
 summarize(num_of_medals = n()) %>%
 filter(num_of_medals >= 10)

We can then use this in an inner_join with the main athletes dataframe.

inner_join(athletes, ten_plus, by = "Athlete")

A tibble: 45 x 8
Athlete Country Gender Discipline
<chr> <chr> <chr> <chr>
1 BELMONDO, Stefania ITA Women Cross Country Skiing
2 BELMONDO, Stefania ITA Women Cross Country Skiing
3 BELMONDO, Stefania ITA Women Cross Country Skiing
4 BELMONDO, Stefania ITA Women Cross Country Skiing
5 BELMONDO, Stefania ITA Women Cross Country Skiing
6 BELMONDO, Stefania ITA Women Cross Country Skiing
7 BELMONDO, Stefania ITA Women Cross Country Skiing
8 BELMONDO, Stefania ITA Women Cross Country Skiing
9 BELMONDO, Stefania ITA Women Cross Country Skiing
10 BELMONDO, Stefania ITA Women Cross Country Skiing
... with 35 more rows, and 4 more variables: Event <chr>, Year <int>,
Medal <chr>, num_of_medals <int>

Now we have just the 45 medals that these four athletes have won, showing us what events they
competed in. And because we used inner_join, we now have a new column showing the total
number of medals that person has won.

3.2.1 Your Turn!

The chal lenge
1. The athletes that won 10 or more medals did so all within one discipline. As it turns out,

there have been just 14 athletes that have medaled in two different disciplines. Use
summarize to find out who they were, and create a new spreadsheet showing just their data.
Hint, you may need to use length(unique()).

orcid.org/0000-0002-9185-0048 19

The so lution

Here’s how I did this. Grouping the athletes data by Athlete, I create a column arbitrarily
named num_disciplines that is the length of the list of unique disciplines each person as
competed in. I then filter out the ones with just one and save it into an object called multis.
Then, I use semi_join with the original athletes dataframe to show me the 40 medals these
14 people have won.

multis <- athletes %>%
 group_by(Athlete) %>%
 summarize(num_disciplines = length(unique(Discipline))) %>%
 filter(num_disciplines > 1)
multis

A tibble: 14 x 2
Athlete num_disciplines
<chr> <int>
1 BRODAHL, Sverre 2
2 ERDMANN, Susi-Lisa 2
3 FLAIM, Eric 2
4 GROTTUMSBRAATEN, Johan 2
5 HAGEN, Oddbjorn 2
6 HASU, Heikki 2
7 HAUG, Thorleif 2
8 HEATON, Jennison 2
9 HEATON, John 2
10 HOFFSBAKKEN, Olaf 2
11 KÄLIN, Alois 2
12 REZTSOVA, Anfisa 2
13 STRÖMSTAD, Thoralf 2
14 WEISSENSTEINER, Gerda 2

athletes %>%
 semi_join(multis, by = "Athlete")

A tibble: 40 x 7
Athlete Country Gender Discipline
<chr> <chr> <chr> <chr>
1 BRODAHL, Sverre NOR Men Cross Country Skiing
2 BRODAHL, Sverre NOR Men Nordic Combined
3 ERDMANN, Susi-Lisa GER Women Luge
4 ERDMANN, Susi-Lisa GER Women Luge
5 ERDMANN, Susi-Lisa GER Women Bobsleigh
6 FLAIM, Eric USA Men Speed skating
7 FLAIM, Eric USA Men Short Track Speed Skating
8 GROTTUMSBRAATEN, Johan NOR Men Cross Country Skiing
9 GROTTUMSBRAATEN, Johan NOR Men Cross Country Skiing
10 GROTTUMSBRAATEN, Johan NOR Men Nordic Combined
... with 30 more rows, and 3 more variables: Event <chr>, Year <int>,
Medal <chr>

orcid.org/0000-0002-9185-0048 20

4 RESHAPING YOUR DATA

The final topic in this workshop has to do with reshaping your data. To explain what this section
will be about, let’s look at the women who medaled in figure skating in the nineties again. I’ll
simplify the data a little bit by showing just three columns.

skaters_90s %>%
 select(Athlete, Year, Medal)

A tibble: 9 x 3
Athlete Year Medal
<chr> <int> <chr>
1 BAIUL, Oksana 1994 Gold
2 CHEN, Lu 1994 Bronze
3 CHEN, Lu 1998 Bronze
4 ITO, Midori 1992 Silver
5 KERRIGAN, Nancy 1992 Bronze
6 KERRIGAN, Nancy 1994 Silver
7 KWAN, Michelle 1998 Silver
8 LIPINSKI, Tara 1998 Gold
9 YAMAGUCHI, Kristi 1992 Gold

Now compare that to this dataset.

A tibble: 3 x 4
Year Gold Silver Bronze
* <int> <chr> <chr> <chr>
1 1992 YAMAGUCHI, Kristi ITO, Midori KERRIGAN, Nancy
2 1994 BAIUL, Oksana KERRIGAN, Nancy CHEN, Lu
3 1998 LIPINSKI, Tara KWAN, Michelle CHEN, Lu

Is this the same data? Sure. All the information that can be found in one is also found in the
others. But what is different? In the top one, we have nine rows, one for each year and medal,
and within each row we have three columns that contain information about the person’s name,
what year they competed, and what medal they got. In the second one we have just three rows,
one for each year, and there are columns indicating who got gold, silver, and bronze.

The data is identical, but the spreadsheets are organized differently. The first spreadsheet is
known as a “tall” format, because, well, there are 9 rows so it’s very tall. The second is known
as a “wide” format because there are more columns making it wider. Why would you need to
use one over the other? There are lots of reasons, but the main one for me is that certain
visualizations and statistical models require the data to be in a certain shape. Unfortunately, it’s
out of the scope of this workshops to show these applications, but it’s important to have these
tricks up your sleeve for when you need them.

orcid.org/0000-0002-9185-0048 21

4.1 GOING FROM TALL TO WIDE

So how did I make these changes? The key here is the spread function, which transforms a
spreadsheet from tall to wide. This takes just two arguments. The first is the key, which is the
column that contains all the values that you want to spread out into each of their own columns.
So in the original, the Medal column contains just three unique values "Gold", "Silver", and
"Bronze". We want each of these to be its own column. The second argument is the value,
which is the column that contains the information you want to populate these newly created
cells with. Since we want the names to fill in those cells, we select the Athlete column. So, the
code for the second spreadsheet is this.

skaters_90s %>%
 select(Athlete, Year, Medal) %>%
 spread(Medal, Athlete) %>%
 select(Year, Gold, Silver, Bronze)

A tibble: 3 x 4
Year Gold Silver Bronze
* <int> <chr> <chr> <chr>
1 1992 YAMAGUCHI, Kristi ITO, Midori KERRIGAN, Nancy
2 1994 BAIUL, Oksana KERRIGAN, Nancy CHEN, Lu
3 1998 LIPINSKI, Tara KWAN, Michelle CHEN, Lu

I’ve included some extra code in there about first selecting just the columns we need and then
reordering the columns, but the main focus is the spread function.

4.1.1 Your Turn!

The chal lenge

Create a different version of the same data such that each medal is on its own row, and you have
columns for each year.

The so lution

Here’s how I would have done it.

skaters_90s %>%
 select(Athlete, Year, Medal) %>%
 spread(Year, Athlete)

A tibble: 3 x 4
Medal `1992` `1994` `1998`
* <chr> <chr> <chr> <chr>
1 Bronze KERRIGAN, Nancy CHEN, Lu CHEN, Lu
2 Gold YAMAGUCHI, Kristi BAIUL, Oksana LIPINSKI, Tara
3 Silver ITO, Midori KERRIGAN, Nancy KWAN, Michelle

orcid.org/0000-0002-9185-0048 22

4.2 SPREADING WITH MORE COLUMNS

This simple example was straightforward enough, but what happens if we want to keep all the
columns? Here we get a slightly different picture. What does each row represent?

skaters_90s %>%
 spread(Medal, Athlete)

A tibble: 7 x 8
Country Gender Discipline Event Year Bronze
* <chr> <chr> <chr> <chr> <int> <chr>
1 CHN Women Figure skating Individual 1994 CHEN, Lu
2 CHN Women Figure skating Individual 1998 CHEN, Lu
3 JPN Women Figure skating Individual 1992 <NA>
4 UKR Women Figure skating Individual 1994 <NA>
5 USA Women Figure skating Individual 1992 KERRIGAN, Nancy
6 USA Women Figure skating Individual 1994 <NA>
7 USA Women Figure skating Individual 1998 <NA>
... with 2 more variables: Gold <chr>, Silver <chr>

Here, each row represents a unique combination of the countries and years. Since Japan only
medaled one year here, it only has one row. Since USA medaled in three different years, it has
three rows. There are lots of NAs in the data because not all counties got all medals every year.
This is not a very useful representation of the data.

The reason why this isn’t as useful for the one we saw earlier is because the Country column
and what was once the Athelete column are linked. That is, the the country is simply metadata
about the athlete. Since we’ve removed the Athlete column by spreading it out over many
columns, the Country column is sort of stuck following along how it can. The solution is to
make sure that the variable you spread has no other unique metadata in the same spreadsheet.
This can be done with select, as we’ve seen before.

But why were Gender, Discipline, and Event okay? Well, for one, they’re all identical for this
small dataset. But the real reason is because they are all linked to the year, rather than the
individual. So the key to a successful spread is to think about what you want each row to
represent. If there is additional metadata about that thing, it’s okay to keep the column. But if
there’s additional metadata about the variable you want to spread out, remove it before
spreading.

Let’s look at another example. Let’s look at just the men who medaled in any of the six events
within the snowboarding discipline in 2014.

snowboarders <- athletes %>%
 filter(Year == 2014, Discipline == "Snowboard", Gender == "Men")
snowboarders

A tibble: 15 x 7
Athlete Country Gender Discipline Event Year
<chr> <chr> <chr> <chr> <chr> <int>

orcid.org/0000-0002-9185-0048 23

1 DEIBOLD, Alex USA Men Snowboard Snowboard Cross 2014
2 GALMARINI, Nevin SUI Men Snowboard Giant Parall.S. 2014
3 HIRANO, Ayumu JPN Men Snowboard Half-Pipe 2014
4 HIRAOKA, Taku JPN Men Snowboard Half-Pipe 2014
5 KARL, Benjamin AUT Men Snowboard Parallel Slalom 2014
6 KOSIR, Zan SLO Men Snowboard Giant Parall.S. 2014
7 KOSIR, Zan SLO Men Snowboard Parallel Slalom 2014
8 KOTSENBURG, Sage USA Men Snowboard Slopestyle 2014
9 MCMORRIS, Mark CAN Men Snowboard Slopestyle 2014
10 OLYUNIN, Nikolay RUS Men Snowboard Snowboard Cross 2014
11 PODLADTCHIKOV, Iouri SUI Men Snowboard Half-Pipe 2014
12 SANDBECH, Staale NOR Men Snowboard Slopestyle 2014
13 VAULTIER, Pierre FRA Men Snowboard Snowboard Cross 2014
14 WILD, Vic RUS Men Snowboard Giant Parall.S. 2014
15 WILD, Vic RUS Men Snowboard Parallel Slalom 2014
... with 1 more variables: Medal <chr>

Let’s say we want to make a different version of this spreadsheet with one row per medal, and
one column per discipline. How would we do that?

Well, because Event is the column that we want to spread across multiple columns, we need to
use that as the first argument in the spread function. Let’s say we’re just interested in the
countries that took the medal and not names of the individuals themselves. We’ll then put the
Country column as the second argument to spread. What is the result?

snowboarders %>%
 spread(Event, Country)

A tibble: 14 x 10
Athlete Gender Discipline Year Medal `Giant Parall.S.`
* <chr> <chr> <chr> <int> <chr> <chr>
1 DEIBOLD, Alex Men Snowboard 2014 Bronze <NA>
2 GALMARINI, Nevin Men Snowboard 2014 Silver SUI
3 HIRANO, Ayumu Men Snowboard 2014 Silver <NA>
4 HIRAOKA, Taku Men Snowboard 2014 Bronze <NA>
5 KARL, Benjamin Men Snowboard 2014 Bronze <NA>
6 KOSIR, Zan Men Snowboard 2014 Bronze SLO
7 KOSIR, Zan Men Snowboard 2014 Silver <NA>
8 KOTSENBURG, Sage Men Snowboard 2014 Gold <NA>
9 MCMORRIS, Mark Men Snowboard 2014 Bronze <NA>
10 OLYUNIN, Nikolay Men Snowboard 2014 Silver <NA>
11 PODLADTCHIKOV, Iouri Men Snowboard 2014 Gold <NA>
12 SANDBECH, Staale Men Snowboard 2014 Silver <NA>
13 VAULTIER, Pierre Men Snowboard 2014 Gold <NA>
14 WILD, Vic Men Snowboard 2014 Gold RUS
... with 4 more variables: `Half-Pipe` <chr>, `Parallel Slalom` <chr>,
Slopestyle <chr>, `Snowboard Cross` <chr>

Hmm. Not quite what we wanted. What does each row show now? Similar to before, we have
one row for every unique combination of medals and athlete. Again, the countries are linked to

orcid.org/0000-0002-9185-0048 24

the athletes, so spreading one out into various columns doesn’t actually consolidate anything.
We can fix this by removing the Athlete column first:

snowboarders %>%
 select(-Athlete) %>%
 spread(Event, Country)

A tibble: 3 x 9
Gender Discipline Year Medal `Giant Parall.S.` `Half-Pipe`
* <chr> <chr> <int> <chr> <chr> <chr>
1 Men Snowboard 2014 Bronze SLO JPN
2 Men Snowboard 2014 Gold RUS SUI
3 Men Snowboard 2014 Silver SUI JPN
... with 3 more variables: `Parallel Slalom` <chr>, Slopestyle <chr>,
`Snowboard Cross` <chr>

There we go. That’s what we wanted.

So this is is a nice way to reshape your data.

4.2.1 Your Turn!

The Chal lenge

Try reshaping the snowboarders data so that each discipline is on its own row still, but the
athletes names rather than their countries are displayed.

The So lut ion
snowboarders %>%
 select(-Country) %>%
 spread(Event, Athlete)

A tibble: 3 x 9
Gender Discipline Year Medal `Giant Parall.S.` `Half-Pipe`
* <chr> <chr> <int> <chr> <chr> <chr>
1 Men Snowboard 2014 Bronze KOSIR, Zan HIRAOKA, Taku
2 Men Snowboard 2014 Gold WILD, Vic PODLADTCHIKOV, Iouri
3 Men Snowboard 2014 Silver GALMARINI, Nevin HIRANO, Ayumu
... with 3 more variables: `Parallel Slalom` <chr>, Slopestyle <chr>,
`Snowboard Cross` <chr>

4.3 GOING FOM WIDE TO TALL

The logical opposite of spread is the gather function, which takes a wide dataframe and
converts it into a tall format. This is really useful especially if you’ve inherited some data that
was in a format that wasn’t ideal. I’ve noticed that it’s easier for me to work in Excel with very
wide data, but it’s easier in R to work with tall data. So I often find myself having to convert
Excel spreadsheets from their original wide format to a tall format.

orcid.org/0000-0002-9185-0048 25

So let’s create some very wide data, for the sake of illustration, let’s look at a wide version of the
women’s cross country skiing medalists since the year 2000. First, I apply the appropriate filter.
But since there were some team events with multiple people winning medals, each person was
on its own row. I’m more interested in the countries than the athletes themselves, so I remove
their names, and then use unique() to remove any duplicate rows, thus reducing it down to one
row per county, per year, per medal. I then apply the spread function and put one event in each
column with the name of the country in the cells.

cc_skiing_wide <- athletes %>%
 filter(Year >= 2000, Discipline == "Cross Country Skiing", Gender == "Wom
en") %>%
 select(-Athlete) %>%
 unique() %>%
 spread(Event, Country)
cc_skiing_wide

A tibble: 12 x 13
Gender Discipline Year Medal `10KM` `15KM Mass Start`
* <chr> <chr> <int> <chr> <chr> <chr>
1 Women Cross Country Skiing 2002 Bronze ITA RUS
2 Women Cross Country Skiing 2002 Gold NOR ITA
3 Women Cross Country Skiing 2002 Silver RUS CZE
4 Women Cross Country Skiing 2006 Bronze NOR <NA>
5 Women Cross Country Skiing 2006 Gold EST <NA>
6 Women Cross Country Skiing 2006 Silver NOR <NA>
7 Women Cross Country Skiing 2010 Bronze NOR <NA>
8 Women Cross Country Skiing 2010 Gold SWE <NA>
9 Women Cross Country Skiing 2010 Silver EST <NA>
10 Women Cross Country Skiing 2014 Bronze NOR <NA>
11 Women Cross Country Skiing 2014 Gold POL <NA>
12 Women Cross Country Skiing 2014 Silver SWE <NA>
... with 7 more variables: `30KM` <chr>, `4X5KM Relay` <chr>, `5Km
Pursuit` <chr>, `Combined 7.5 + 7.5Km Mass Start` <chr>,
`Combined7.5+7.5` <chr>, `Sprint 1.5KM` <chr>, `Team Sprint` <chr>

So let’s say you’ve been asked to analyze this data, and you were given this spreadsheet as is. It’s
kind of difficult to work with because there are so many cross country skiing events spread across
9 columns, with lots of NAs. The way we can transform this back into a tall format is with the
gather function.

To think about this conceptually, what gather is going to do is combine many columns into just
two. One of these columns is going to have the names of the columns you want to gather. In this
case, we have 22 columns with various events in them, so we might want to gather them up into
a new column called “Events” or something. The other new column you’ll need to create is going
to have all the values that are currently in the cells of the columns you want to gather together.
In this case, we have all the country codes, so we might want to gather them up into a new
column called “Country”.

orcid.org/0000-0002-9185-0048 26

So the first two arguments of gather are the new arbitrarily-named columns that you’re going
to create. The first one is the one with the column names and the second one is the one with the
cells. Just to show that they are indeed arbitrary, I’m going to use ridiculous names.

cc_skiing_wide %>%
 gather(this_column_has_the_events, this_column_has_the_countries)

A tibble: 156 x 2
this_column_has_the_events this_column_has_the_countries
<chr> <chr>
1 Gender Women
2 Gender Women
3 Gender Women
4 Gender Women
5 Gender Women
6 Gender Women
7 Gender Women
8 Gender Women
9 Gender Women
10 Gender Women
... with 146 more rows

Wait. Oops. What happened? R didn’t know that we only intended to gather just the 9 event
columns and just assumed we wanted to gather everything into just two columns. So the first
column, which was supposed to just have all the column names, did do that, but it also included
Gender, Discipline, Year, and Medal. If you scroll down to about the 49th entry, you’ll see
that finally the event columns are there. But this is not what we wanted. We need to tell gather
that we only wanted to combine certain columns and to leave the rest alone.

The way to do this is by using additional arguments in gather. They are, quite simply, the name
of the columns you want to gather. This is very similar to the select function, so you can type
all the columns individually, or, in this case, type the columns you want to leave out, each
prefixed with a minus sign/hyphen -.

cc_skiing_wide %>%
 gather(this_column_has_the_events, this_column_has_the_countries, -Gender
, -Discipline, -Year, -Medal)

A tibble: 108 x 6
Gender Discipline Year Medal this_column_has_the_events
<chr> <chr> <int> <chr> <chr>
1 Women Cross Country Skiing 2002 Bronze 10KM
2 Women Cross Country Skiing 2002 Gold 10KM
3 Women Cross Country Skiing 2002 Silver 10KM
4 Women Cross Country Skiing 2006 Bronze 10KM
5 Women Cross Country Skiing 2006 Gold 10KM
6 Women Cross Country Skiing 2006 Silver 10KM
7 Women Cross Country Skiing 2010 Bronze 10KM
8 Women Cross Country Skiing 2010 Gold 10KM

orcid.org/0000-0002-9185-0048 27

9 Women Cross Country Skiing 2010 Silver 10KM
10 Women Cross Country Skiing 2014 Bronze 10KM
... with 98 more rows, and 1 more variables:
this_column_has_the_countries <chr>

There we go. So by specifying which columns you want to be gathered either by naming them
specifically or listing the ones to ignore, we can convert our data back to its original form. In this
case though, there’s one row per cell of the wide version of the spreadsheet, regardless of
whether there was data there or not. So if you scroll through the
this_column_has_the_countries column, there are lots of NAs because some events were not
done in some years. We can then just apply a filter to select only those rows that are not NA using
!is.na(). (I’m also going to switch back to sensible column names.)

cc_skiing_wide %>%
 gather(Event, Country, -Gender, -Discipline, -Year, -Medal) %>%
 filter(!is.na(Country))

A tibble: 72 x 6
Gender Discipline Year Medal Event Country
<chr> <chr> <int> <chr> <chr> <chr>
1 Women Cross Country Skiing 2002 Bronze 10KM ITA
2 Women Cross Country Skiing 2002 Gold 10KM NOR
3 Women Cross Country Skiing 2002 Silver 10KM RUS
4 Women Cross Country Skiing 2006 Bronze 10KM NOR
5 Women Cross Country Skiing 2006 Gold 10KM EST
6 Women Cross Country Skiing 2006 Silver 10KM NOR
7 Women Cross Country Skiing 2010 Bronze 10KM NOR
8 Women Cross Country Skiing 2010 Gold 10KM SWE
9 Women Cross Country Skiing 2010 Silver 10KM EST
10 Women Cross Country Skiing 2014 Bronze 10KM NOR
... with 62 more rows

Perfect. So that took the original 108 rows with NAs to just 72 without any NAs.

4.4 DEBUGGING SPREAD AND GATHER ERRORS

Being able to go from wide to tall and back is a really useful thing to know how to do. However,
there are lots of times when things go wrong. In this section, I’ll briefly show the two most
common problems I face in my own code, what they mean, and how to fix them.

4.4.1 Error: Duplicate identifiers

When we were making the wide format for the cross country skiers using spread, I used the
unique function to remove duplicates. Why did I do that? Well, because when I first tried to
make the spreadsheet without it, it gave me an error message.

athletes %>%
 filter(Year >= 2000, Discipline == "Cross Country Skiing", Gender == "Wom
en") %>%

orcid.org/0000-0002-9185-0048 28

 select(-Athlete) %>%
 #unique() %>%
 spread(Event, Country) %>%
 print()

Error: Duplicate identifiers for rows (1, 35, 61, 85), (4, 33, 53, 95), (1
0, 65, 82, 102), (22, 28, 81, 114), (3, 58, 63, 113), (6, 20, 54, 92), (57, 6
7, 86, 89), (13, 38, 103, 107), (29, 75, 93, 117), (21, 27, 34, 77), (32, 36,
44, 116), (59, 60, 73, 90), (56, 87), (2, 24), (84, 98), (46, 47), (76, 94),
(31, 42), (37, 72), (18, 79), (74, 91)

What does this mean? Well, fortunately, spread gives me the exact row numbers that caused
the error, so I can zoom in and see what the problematic rows are. The way I diagnose this is to
create a temporary dataframe, temp, that has all the code from the above block up until spread.

temp <- athletes %>%
 filter(Year >= 2000, Discipline == "Cross Country Skiing", Gender == "Wom
en") %>%
 select(-Athlete)

The first set of problematic rows was with rows 1, 35, 61, and 85, so let’s take a look at just
those.

temp[c(1, 35, 61, 85),]

A tibble: 4 x 6
Country Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <int> <chr>
1 SUI Women Cross Country Skiing 4X5KM Relay 2002 Bronze
2 SUI Women Cross Country Skiing 4X5KM Relay 2002 Bronze
3 SUI Women Cross Country Skiing 4X5KM Relay 2002 Bronze
4 SUI Women Cross Country Skiing 4X5KM Relay 2002 Bronze

Okay, so what we see here are four identical rows. The 2002 Bronze medalists of the 4X5KM
Relay from Switzerland. This makes sense. This is a four-person team, so of course there will be
four people winning the bronze because they’re all part of the winning team. The only reason
they’re identical here is because we took out the athletes’ names.

Why is this is a problem? Think about what spread is trying to do. It’s turning all the events—
in this case “4X5KM Relay”—into columns and trying to put each combination of Discipline,
Year, and Medal into one row, with the country—in this case “SUI”—filling in that cell. But, in
our data, there are four rows for that unique combination of parameters. The country is the same
in all four, but spread doesn’t know that you know that, and it doesn’t know what to do.
Basically, it’s trying to fit four pieces of information—“SUI”, “SUI”, “SUI”, and “SUI”—into one
cell.

We can see this in some of the other rows that the error message told us about:

temp[c(59, 60, 73, 90),]

orcid.org/0000-0002-9185-0048 29

A tibble: 4 x 6
Country Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <int> <chr>
1 FIN Women Cross Country Skiing 4X5KM Relay 2014 Silver
2 FIN Women Cross Country Skiing 4X5KM Relay 2014 Silver
3 FIN Women Cross Country Skiing 4X5KM Relay 2014 Silver
4 FIN Women Cross Country Skiing 4X5KM Relay 2014 Silver

temp[c(2, 24),]

A tibble: 2 x 6
Country Gender Discipline Event Year Medal
<chr> <chr> <chr> <chr> <int> <chr>
1 SWE Women Cross Country Skiing Team Sprint 2006 Gold
2 SWE Women Cross Country Skiing Team Sprint 2006 Gold

So one solution to this problem is to do what I did and use the unique function to remove these
duplicate rows. But this only works if the countries are all unique. What if we wanted to get a
spreadsheet that contains not the countries in the cells but the athletes’ names.

athletes %>%
 filter(Year >= 2000, Discipline == "Cross Country Skiing",
 Gender == "Women") %>%
 spread(Event, Athlete) %>%
 print()

Error: Duplicate identifiers for rows (57, 67, 86, 89), (59, 60, 73, 90),
(4, 33, 53, 95), (6, 20, 54, 92), (29, 75, 93, 117), (21, 27, 34, 77), (22, 2
8, 81, 114), (10, 65, 82, 102), (13, 38, 103, 107), (3, 58, 63, 113), (1, 35,
61, 85), (32, 36, 44, 116), (84, 98), (56, 87), (74, 91), (76, 94), (18, 79),
(46, 47), (2, 24), (31, 42), (37, 72)

The same error message shows up. Let’s create another temporary dataframe and diagnose the
problem.

temp2 <- athletes %>%
 filter(Year >= 2000, Discipline == "Cross Country Skiing",
 Gender == "Women")

temp2[c(57, 67, 86, 89),]

A tibble: 4 x 7
Athlete Country Gender Discipline Event
<chr> <chr> <chr> <chr> <chr>
1 KUITUNEN, Virpi FIN Women Cross Country Skiing 4X5KM Relay
2 MURANEN, Pirjo FIN Women Cross Country Skiing 4X5KM Relay
3 ROPONEN, Riitta-Liisa FIN Women Cross Country Skiing 4X5KM Relay
4 SAARINEN, Aino-Kaisa FIN Women Cross Country Skiing 4X5KM Relay
... with 2 more variables: Year <int>, Medal <chr>

orcid.org/0000-0002-9185-0048 30

Yeah, so it’s the same problem. It’s trying to cram four names into a single cell, and it doesn’t
know what to do. Here, unique wouldn’t even work because the rows are all different. A really
nice solution would be to simply concatenate their names, maybe separated by commas, and put
that one string in the cell. Or, more fancily, combine them in a list, and put that whole list in the
cell (which is possible in R). As far as I know, spread can’t do that, but I’m sure other people
have thought of this and have written an R package for it.

The point is that sometimes you just can’t make the spreadsheet you want if you’re not
completely familiar with your data. In this case, spread might not be the solution and you may
have to do some digging online to find the fix.

4.4.2 Duplicate columns

The other issue I’ve run into a lot happens when I use one of the join functions. To illustrate
this, what if I wanted to add the name of the sport to the athletes dataframe. We have the
discipline and the event, but not the sport itself. This is in the events dataframe, so we can just
merge them:

left_join(athletes, events, by = "Event")

A tibble: 101,910 x 10
Athlete Country Gender Discipline.x Event
<chr> <chr> <chr> <chr> <chr>
1 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
2 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
3 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
4 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
5 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
6 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
7 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
8 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
9 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
10 AAHLBERG, Mats SWE Men Ice Hockey Ice Hockey
... with 1.018e+05 more rows, and 5 more variables: Year.x <int>,
Medal <chr>, Year.y <int>, Sport <chr>, Discipline.y <chr>

Whoa, whoa, whoa! We’ve got several problem here. If you look, we now have a spreadsheet
with over 100,000 rows! What happened?? You can get some clues by looking at the column
names. We now now Discipline.x, Year.x, Year.y, and Discipline.y. What are those
about? Turns out there was a column named Discipline and another one named Year in both
the athletes and the events dataframes. left_join didn’t know what to do with them, since
it has to add both of them, so it just added a little suffix to the end of them. The *.x columns
refer to the ones from athletes and the *.y refers to the events. The reason why there are so
many rows is because it was trying to get unique combinations of all these years and disciplines
and events, even though we know they just refer to the same thing.

orcid.org/0000-0002-9185-0048 31

How can we fix this? As it turns out, you can specify multiple columns that need to match
between the columns. So instead of just Event, we can have it match Event, Discipline, and
Year

left_join(athletes, events, by = c("Event", "Discipline", "Year"))

A tibble: 5,770 x 8
Athlete Country Gender Discipline
<chr> <chr> <chr> <chr>
1 AAHLBERG, Mats SWE Men Ice Hockey
2 AAHLEN, Thomas SWE Men Ice Hockey
3 AALAND, Per Knut NOR Men Cross Country Skiing
4 AALTONEN, Juhamatti FIN Men Ice Hockey
5 AAMODT, Kjetil Andre NOR Men Alpine Skiing
6 AAMODT, Kjetil Andre NOR Men Alpine Skiing
7 AAMODT, Kjetil Andre NOR Men Alpine Skiing
8 AAMODT, Kjetil Andre NOR Men Alpine Skiing
9 AAMODT, Kjetil Andre NOR Men Alpine Skiing
10 AAMODT, Kjetil Andre NOR Men Alpine Skiing
... with 5,760 more rows, and 4 more variables: Event <chr>, Year <int>,
Medal <chr>, Sport <chr>

Whew. There we go. We now have the original 5,770 rows that we had before, we don’t have
any duplicate columns, and the last column is now a new one with the name of the Sport.

This trick of matching multiple columns is actually quite useful for situations like these where
you need to make sure things match in multiple ways. For example, there are three different
events called "Individual" within three different disciplines:

events %>%
 filter(Event == "Individual") %>%
 select(-Year) %>%
 unique()

A tibble: 3 x 3
Sport Discipline Event
<chr> <chr> <chr>
1 Bobsleigh Skeleton Individual
2 Skating Figure skating Individual
3 Skiing Nordic Combined Individual

This is actually really important because if you just do a merge based on the event name, you’re
going to end up with bad data because it could match any one of these three disciplines. So in
that case, it does make sense to do a join on multiple column names (Discipline and Event to
be sure, but I would even throw in Sport to be safe).

orcid.org/0000-0002-9185-0048 32

5 FINAL REMARKS

The goal for this workshop was to expose you to some more advanced techniques within the
tidyverse. We looked at how to merge datasets with the various *_join functions, how to get
summaries of your data with group_by and summarize, and then how to reshape your data with
spread and gather. I encourage you to learn more about these if you’re still confused by looking
through and Chapter 135, §5.66, and §12.37, respectfully, on these topics.

When I first read about these topics, I didn’t learn them very well. But, what it did for me was
make me aware of what is possible in R. So a few months later when a problem came along, I was
able to think back to these techniques Turns out I was learning the solutions to problems I hadn’t
even had yet. But once you need them, they’re great.

5 http://r4ds.had.co.nz/relational-data.html
6 http://r4ds.had.co.nz/transform.html#grouped-summaries-with-summarise
7 http://r4ds.had.co.nz/tidy-data.html#spreading-and-gathering

