# Reconciling perception with production in Southern speech

Rachel M. Olsen, Joseph A. Stanley, Michael L. Olsen, Lisa Lipani, & Margaret E. L. Renwick



The American Dialect Society January 6, 2019



Southern diphthong weakening

- Weakening of canonical /ai oi ao/ occurs in Southern speech (Thomas 2003)
- /ai/ weakening
  - Most prevalent
  - Triggering feature of the Southern Vowel Shift (SVS) (Labov, Ash & Boberg 2006)
- /ɔɪ/ weakening
  - Most prevalent amongst African Americans, and older European Americans in the South
  - For everyone before laterals (Thomas 2008)
- /aʊ/ weakening
  - Widespread in European American Southern English (Thomas 2008)

## Transcription & Production

- Many studies have compared transcriptions by multiple speakers
  - Henderson (1938), Ladefoged (1960)
  - Buckeye Corpus vowels had 74% agreement. (Pitt et al. 2005)
  - Read RP had 83% agreement (Eisen 1993)
  - Transcriptions are affected by transcriber and speech variables (Cucchiarini 1993)
- Fewer have compared transcriptions to production data.
  - Kerswell & Wright (1990) conclude that reliability is not certain.
- Sometimes Linguistic Atlas transcriptions are questioned
  - Johnson (2010:28–29) flat out doubts some LANE transcriptions
  - Regarding the LOT-THOUGHT merger, Mouton (1968:464) says the LANE fieldworkers were "hopelessly and humanly incompetent".

## This Study

#### **Research question**

How does perception compare to production in southern speech in Linguistic Atlas data?

#### Hypothesis

We expect impressionistic glide weakening to correlate with less dynamic vowels.

# Methods

The Digital Archive of Southern Speech (DASS)

- Sociolinguistic audio corpus; subset of Linguistic Atlas of the Gulf States (Pedersen *et al.* 1986, Kretzschmar *et al.* 2013, Olsen *et al.* 2017)
- 64 speakers (30F)
  - Born 1886–1965 (μ = 61 years old)
  - Recorded 1970–1983
- 367 hours of audio (2.5–10 hours per interview; μ = 5.75 hours)
- 4 speakers for each of 16 geographical sectors
  - 1 African American (AA) speaker
  - 3 European American (EA) speaker "DASS Types"
    - Type I: Folk
    - Type II: Common
    - Type III: Cultured

## Geographic distribution of DASS speakers





## Idiolect Synopsis

- Summary of target phonemes in various environments for each speaker
- Impressionistic, and thus a record of perception

| MLY                            | voiceless                                                                                              | voiced              | n        | asal                       | lateral      |        | rhotic                |
|--------------------------------|--------------------------------------------------------------------------------------------------------|---------------------|----------|----------------------------|--------------|--------|-----------------------|
| /1/                            | wisse                                                                                                  | krs»b               | P        | fin                        | hz * > +     | .      | I, j                  |
| /٤/                            | # ste>ps                                                                                               | 1 5 5 9             | *        | t'e"n                      | né^. 13      | Ĭ      | mérikrissmas          |
| /2/                            | glæts                                                                                                  | * ræ <sup>1</sup> g | h        | žima,                      | p'2. j I     | 't     | * mænred              |
| 101                            | * p'u <st< td=""><td>wurd haras</td><td></td><td>-</td><td>* p'u = !</td><td></td><td>~.ser</td></st<> | wurd haras          |          | -                          | * p'u = !    |        | ~.ser                 |
| IN                             | bi-kit                                                                                                 | házbn               | * 51-    | ndarien                    | b1. "+       | 6      | and the second        |
| 10/                            | kra, P                                                                                                 | * fas. 3 + 5        | * dz     | aonz (pl.)                 | k'a·l=       | "dz    | k'a» ?z               |
| /1/                            | * j I > i > st                                                                                         | * Orizi             | b        | i.n                        | find         | -d     | KIETRET               |
| /e/                            | * e>≡t                                                                                                 | mesa                | S I      | trevin                     | re>= t       |        | - พร้าร ส             |
| /u/                            | t'+ + θ                                                                                                | baitin /roudz       | WERN     |                            | mj # +2      |        | p'u.m                 |
| /0/                            | k'o≤⊎ts                                                                                                | 390.4               | h        | 0 < # m                    | k'0"# +      | ,d     | horins                |
| /5/                            | * doviortin                                                                                            | * d'2-2-9-          | 9:       | ozo^n                      | 500+         | ŧ      | * horis               |
| /3/                            | * t[st]                                                                                                | Ord                 | wstimz   |                            | * 93.42      |        | waira                 |
| /a1/                           | ra, <sup>≞</sup> t                                                                                     | * fa**v             | * na, In |                            | mait         | z      | * wa> 2               |
| /au/                           | * han.us                                                                                               | * k'a2#z            | * d      | 2*AN                       | 20344        |        | flan. wwaz            |
| /.51/                          | ofestez.                                                                                               | * p' 5              | dz onent |                            | * >**        |        | - (                   |
| PL                             | p'or.est                                                                                               | p'æsenz.            | ĨĨ       | rismp                      |              | 0234   | der s                 |
| FW                             | kwô* °t š t š                                                                                          | tunje               | * ran)   | a krózons                  | In a a stre  | mě k   | fajut                 |
| ra                             | <sup>2</sup> z (attrib.) / r                                                                           | 0+82 / ri, zú       |          | dra:                       | s'v / dros   | #v /   | ′ dro… ≠v             |
| - 1 draig1 -                   |                                                                                                        |                     |          | i» t / ?e>=t / ?i~t?n      |              | is.t'n |                       |
| · drijk / drægk / -            |                                                                                                        |                     |          | . he> "p~he?"p/ -/ he>"    |              | he, pt |                       |
| d2" v = ) (pres.part.) / - 1 - |                                                                                                        |                     |          | kla <sup>e</sup> m / - ) - |              |        |                       |
|                                | a. tonz                                                                                                | mæinte              | ł        | -                          | -            | r      | ark/wort              |
| p'eizpiszik                    |                                                                                                        | * brilze.p / sz.ks  |          | frents hairp               |              | \$     | i é i s p?            |
| tionats                        |                                                                                                        | * bæ· Etoin         |          | p'uz. Li borun             |              | * +    | flæipdzæks            |
| *, pressmilit .                |                                                                                                        | . ~<                |          |                            |              |        | k[1~)                 |
| frisstosun                     |                                                                                                        | * g#K·brz           |          |                            |              | #      | risin bisinz          |
| * wuild tjack                  |                                                                                                        | w m z · m z         |          | t'æ"·ripnz                 |              | kr     | ·śrofi <sup>^</sup> j |
| * sné+±k findr                 |                                                                                                        |                     | -        |                            | sévrinévidaz |        | - 1                   |



### Compare:





Impressionistic transcriptions from Idiolect Synopses.

63 speakers: 1,323 tokens

Acoustic data from the same speakers.

107,854 tokens

## Impressionistic/Perception Analysis



• Calculated percentage of monophthongized diphthongs for each speaker.

## Acoustic/Production Analysis

- Data Processing
  - Fully transcribed DASS interviews force-aligned using DARLA (Reddy & Stanford 2015)
  - F1 and F2 extracted at five time points for stressed tokens of /aI JI aU/ (Rosenfelder et al. 2014)
- Trajectory length used to quantify diphthongization (Fox & Jacewicz 2009; Farrington *et al.* 2018)
  - Method
    - Composite measurement of F1 and F2 length between points in the vowel trajectory
    - 20%, 35%, 50%, 65%, 80%
    - Captures the amount of vowel movement across time
  - More dynamic vowels (i.e. diphthongs) have longer TL

## Results



### Trajectory length by percentage of tokens transcribed as fully diphthongal

Monophthong = one vowel in transcription or superscripted offglide. Diphthong = full vowel as offglide



### Trajectory length by percentage of tokens transcribed as fully monophthongal

Monophthong = one vowel in transcription. Diphthong = offglide as full vowel or superscript



Trajectory length by percentage of tokens transcribed as fully diphthongal AY only

> Monophthong = one vowel in transcription or superscripted offglide. Diphthong = full vowel as offglide

## Mixed Modeling Perceptual/Transcribed Data

- Dependent variable:
- Percentage of tokens transcribed as fully monophthongal
- Random effect:
- Fixed effects: Phonological environment, Default=voiceless
  Sex, Default=Female
  Ethnicity, Default=African American
  Year of birth

Speaker

- Phonological environment significant
  - Rhotics transcribed as monophthongal more
- No social factors were significant

|             | 6      | p          |
|-------------|--------|------------|
| (Intercept) | -0.087 | 0.962      |
| Lateral     | 0.042  | 0.461      |
| Nasal       | 0.023  | 0.688      |
| Rhotic      | 0.247  | < 0.001*** |
| Voiced      | -0.024 | 0.669      |

## Mixed Modeling Production/Acoustic Data

• Same as previous, only trajectory length is dependent variable

- Phonological environment significant
  - Laterals (not rhotics) most weakened
- European Americans have significantly longer TL (i.e. more diphthongal production) than African Americans

|                      | В      | p          |
|----------------------|--------|------------|
| (Intercept)          | -0.254 | 0.944      |
| Lateral              | -0.137 | 0.043*     |
| Nasal                | 0.235  | < 0.001*** |
| Rhotic               | 0.193  | 0.011*     |
| Voiced               | 0.149  | 0.027*     |
| Voiceless            | 0.144  | 0.034*     |
| European<br>American | 0.253  | 0.007**    |

**Discussion and Conclusion** 

## Discussion

- Acoustic and perceptual data also tell different stories.
  - Perceptual data suggest:
    - Social factors are not significant
    - Pre-rhotic glides are the most weakened
  - Production data suggest:
    - Ethnicity is significant
    - Pre-lateral glides are the most weakened
- As percentage of monophthongal perception goes up, Trajectory Length goes down, as expected, but the correlation is VERY weak.
- Trajectory Length is not necessarily reflective of impressionistic transcriptions of glides in DASS.

### Conclusion

- The acoustic correlates to perception are not always straightforward.
- Production and perception must be considered in concert with one another.
- Future considerations:
  - Other potential acoustic measures of glide weakening, such as trajectory shape
  - A more fine-grained analysis of the Idiolect Synopsis transcriptions
    - Take into account the proposed second vowel of transcribed diphthongs, and weak diphthongs, as well as triphthongization

### References

- Bassett, Marvin Winslett, Susan Leas McDaniel & Lee Pederson. 1986. Linguistic atlas of the Gulf States. [microform :] a concordance of basic materials. Ann Arbor, Mich. : University Microfilms International, 1986.
- Cucchiarini, Catia. "Phonetic Transcription: A Methodological and Emperical Study." 1993. Ph.D. Dissertation. Katholieke Universiteit Niimegen.
- Eisen, Barbara. "Reliability of Speech Segmentation and Labelling at Different Levels of Transcription." EUROSPEECH'93, 1993, 673-76.
- Farrington, Charlie, Tyler Kendall, and Valerie Fridland. "Vowel Dynamics in the Southern Vowel Shift." American Speech 93. no. 2 (May 1, 2018): 186-222. https://doi.org/10.1215/00031283-6926157.
- Fox. Robert Allen & Ewa Jacewicz, 2009. Cross-dialectal variation in formant dynamics of American English vowels. The Journal of the Acoustical *Society of America* 126(5). 2603–2618. doi:10.1121/1.3212921.
- Johnson, Daniel Ezra. Stability and Change Along a Dialect Boundary: The Low Vowels of Southeastern New England, Publication of the American Dialect Society 95. Durham, NC: Duke University Press, 2010.
- Kerswill, Paul, and Susan Wright. "The Validity of Phonetic Transcription: Limitations of a Sociolinguistic Research Tool." Language Variation and Change 2, no. 3 (October 1990): 255-75. https://doi.org/10.1017/S0954394500000363.
- Kretzschmar, William A., Paulina Bounds, Jacqueline Hettel, Lee Pederson, Ilkka Juuso, Lisa Lena Opas-Hänninen & Tapio Seppänen. 2013. The Digital Archive of Southern Speech (DASS). Southern Journal of Linguistics 37(2). Thomas, Erik R. 2008. Rural Southern White Accents. In Edgar W. (ed. Schneider 17-38.
- Labov, William, Sharon Ash & Charles Boberg. 2006. The Atlas of North American English: Phonetics, phonology, and sound change: A multimedia reference tool. Berlin; New York: Mouton de Gruyter.

Moulton, William G. "Structural Dialectology." Language 44, no. 3 (1968): 17.

- Olsen, Rachel M., Michael Olsen, Joseph A. Stanley, Margaret E. L. Renwick, & William A. Kreztschmar, Jr. 2017. Methods for transcription and forced alignment of a legacy speech corpus. Proceedings of Meetings on Acoustics 30, 060001; doi: http://dx.doi.org/10.1121/2.0000559.
- Pederson, Lee, 1981, Protocol of a field record for the linguistic atlas of the Gulf States. Ann Arbor. MI: University Microfilms International.
- Pederson, L., McDaniel, S. L., and Adams, C. M. (eds.). 1986. Linguistic Atlas of the Gulf States. University of Georgia Press. Athens. Georgia. Vols. 1–7.
- Pitt, Mark A., Keith Johnson, Elizabeth Hume, Scott Kiesling, and William Raymond. "The Buckeye Corpus of Conversational Speech: Labeling Conventions and a Test of Transcriber Reliability." Speech Communication 45, no. 1 (January 1, 2005): 89–95. https://doi.org/10.1016/j.specom.2004.09.001.
- Reddy, Sravana & James N. Stanford, 2015, Toward completely automated yowel extraction: Introducing DARLA. *Linguistics Vanguard* 1(1). 15–28. doi:https://doi.org/10.1515/lingvan-2015-0002.
- Rosenfelder, Ingrid, Josef Fruehwald, Keelan Evanini, Scott Sevfarth, Kyle Gormon, Hilary Prichard & Jiahong Yuan. 2014. FAVE (Forced Alignment and Vowel Extraction) Program Suite v1.2.2. https://github.com/JoFrhwld/FAVE.
- Thomas, Erik R. 2003. Secrets Revealed by Southern Vowel Shifting. American Speech 78(2). 150–170. doi:https://doi.org/10.1215/00031283-78-2-150.
  - introds., and summaries) & Bernd (introd.) Kortmann (eds.), Varieties of English, 2: The Americas and the Caribbean, 87–114. Berlin, Germany: Mouton de Gruvter.

## Thank You!

- This research was funded by a grant from the National Science Foundation (BCS1625680), co-PIs Dr. Margaret E. L. Renwick and Dr. William Kretzschmar.
- Download these slides at joeystanley.com/ads2019





#### F1 and F2 for AW for all speakers by environment



