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• Recent sociophonetic software has made analyzing large datasets possible. 

– Manual transcription: Transcriber (Boudahmane et al. 1998) and ELAN (Brugman & Russel 2004) 

– Automated transcription: DARLA (Reddy & Stanford 2015), Bed Word (Ma, Glass & Stanford 2024), and recently 

developed AI tools (Radford et al. 2023)

– Forced-aligners: MAUS (Schiel 1999), ProsodyLab (Gorman, Howell & Wagner 2011), and MFA (McAuliffe et al. 2017)

– Automated extraction of acoustic data: FAVE (Rosenfelder et al. 2014) and Fast Track (Barreda 2021) 

• This facilitates analyzing data originally gathered for linguistic analysis

– public speeches (Harrington, Palethorpe & Watson 2000; Bowie 2003; Wolfram et al. 2016; Holliday 2024)

– personal vlogs (Mendoza-Denton 2011; Lee 2017; Cheng 2018, 2023). 

– oral histories collected by folklorists and historians (Hickey 2017; Strelluf & Gordon 2024 among many others)

We are all indebted to these developers!

Technological Advancements
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• Recording any social interaction likely involves overlapped speech.

• What can we do?

– Go through and code it and then exclude it? (Olsen et al. 2017)

– Consider it an acceptable loss?

• Excluding overlapped speech is especially hard for smaller 

datasets

– Archival recordings, infrequent variables, etc.

• Potential solution

– AI speech diarization and source separation

Overlapping Speech



Speaker Diarization

• Applies speaker labels to segments in a 

single audio track

– Answers “Who spoke when?”

• How is it done?

– Like word embedding vectors, it extracts 

speaker embedding vectors based on 

voice characteristics.

– Clusters those vectors and assigns a 

label.

• Produces separate audio files based on 

diarization.

• In theory, good models recover audio 

that would otherwise be excluded in 

sociophonetic analysis.
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Source Separation
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Is the output source separation good enough for sociophonetic analysis? 

Can we recover some data that was otherwise lost?

Can we save on resources needed to manually tag overlap?
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Methods
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• Two speakers read 300 sentences in a sound booth.

– “Olivia”: female, 20, Asian-American, Atlanta; high-pitched, 

standard-sounding

– “Tyler”: male, 22, White, Atlanta; lower-pitched, slightly southern-

sounding

• Processing

– Manual utterance-level transcriptions

– downsampled from 44.1kHz to 16kHz for direct comparison

– MFA (McAuliffe et al. 2017) and FAVE (Rosenfelder et al. 2014) 

via DARLA (Reddy & Stanford 2015)

Baseline Measurements
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• Merged Tyler’s and Olivia’s audio into a single mono audio file

– Swapped first and second halves of Tyler’s audio

– Trimmed Tyler’s audio from 36 min to 33 min to match Olivia’s

• 53.6% of audio was overlapped speech.

Artificial Overlap
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• We used three (freely available) SepFormer models 

trained using SpeechBrain AI 

– Libri2mix

– Whamr16K

– WSJ02mix

– They’re only different in the data used to train them.

– Concatenated 30-second chunks by identified speaker.

• Evaluation

– Manually spot-checked 6 concatenated files.

– Sent files through DARLA for alignment and extraction.

Source Separation

(x3)
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• Data comparison

– Analyzed the new files using the same transcriptions and processing steps.

– MFA and FAVE via DARLA

– No manual interventions.

• Today’s focus: midpoints of stressed, preobstruent monophthongs.

– Mean: 1039 tokens per file.

Evaluations
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Results
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Auditory Checks for Performance

Libri2

WhamR

WSJ02
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Example: Libri2
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Example: Whamr
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Example: WSJ02
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“Olivia” (female, 20, Asian-American, Atlanta; high-pitched, standard-sounding)“Tyler” (male, 22, White, Atlanta; lower-pitched, slightly southern-sounding)
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Discussion
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• For Libri2 and Whamr, the audio was remarkably pretty clean.

• While the mean formant measurements per vowel were usually small, differences for each 

observation were larger in unpredictable ways.

– Differences were usually within the range of formant estimation variability (Kendall and Vaughn 

2020)

– Remarkably similar to Strelluf & Gordon (2024 chapter 3), who compared various interventions 

and automatic methods to hand-extracted formants. 

– Our differences were smaller than theirs, suggesting that using source separation has less of an 

effect than other types of cleaning.

• We’re cautiously optimistic about these results.

Overview
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• Natural conversation has less overlap so it’ll probably work better.

• Our many open-ended questions

– Multiple speakers? 

– Non-pristine audio?

– Equal volume?

– Speaker dyads of more similar voices?

– Non-standard varieties of English?

Applications to Real-World Overlap
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• Experiment with different models and continuously explore potentially better tools.

• Split audio at natural breaks rather than equal intervals. 

• Listen to the output to ensure clean separation.

• Ensure that transcriptions match the new audio before conducting acoustic analysis.

• Treat formant estimates at the token level with caution. To be safe, only do analyses on vowel 

summaries like averages.

• Carefully document and report all methodological choices and human interventions.

• Do additional research on source separation for linguistic studies!

Recommendations
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